

Indexable carbide milling inserts and tooling

RS stock numbers 848-694 to 848-824

Introduction

Originally developed in the 1950s, tungsten carbide inserts are preformed shapes made from a mixture of cemented carbides. They are manufactured by a 'sintering' rather than a melting process.

Commonly known as 'tooling systems' the basic principle uses replacement carbide inserts fitted into a specific type of toolholder.

Milling cutter bodies and the clamping system can vary in detail from different manufacturers but all follow standard ISO (International Standards Organisation) identification codes. However, without exception, all standard carbide inserts conform to ISO codes in relation to shapes and profiles etc.

Milling

This is a machining process in which work is fed past a rotating cutter having its teeth on the periphery or sides, or both. Milling is used essentially for the rapid removal of metal and is particularly suitable for the production of flat surfaces or a combination of surfaces. It is also possible to produce contoured surfaces by using form cutters. Holes may also be drilled and bored. Generally tolerances of ± 0.025 mm may be held by milling, although 0.075mm is generally more practical.

The choice of cutter type and its size will depend upon several factors.

- Type of work being performed
- Power of machine available.

Generally, use of a cutter incorporating carbide inserts will reduce power requirement on the machine or allow use of increased feed and cutting speeds.

Milling cutters Applications

45° face mill

Primarily intended for surface preparation where the complete area is to be machined.

Square shoulder mill

This cutter will produce steps with square edges, or can be used for surface preparation as per 45° face mills.

End mill

This cutter can be used to produce slots, ramps, shoulders etc.

232-4746

Cutter geometry

Milling cutters Dimensions and specification

45° face mill

Square shoulder mill

Milling cutter inserts

Metric series ISO 1832-1991

1 Shape

2 Clearance angle

3 Tolerances

	Tol	erance ±1	mm	For d, dimension n			nm		
Tol class	m	S	d	6,53	9,525	12,70	15,875	19,05	25,40
А	0,005	0,025	0,025	•	•	•	•	•	•
Е	0,025	0,025	0,025	•	•	•	•	•	•
F	0,005	0,025	0,013	•	•	•	•	•	•
G	0,025	0,13	0,025	•	•	•	•	•	•
Н	0,013	0,025	0,013	•	•	•	•	•	•
	0,005	0,025	0,05	•	•				
т	0,005	0,025	0,08			•			
J	0,005	0,025	0,10				•	•	
	0,005	0,025	0,13						•
	0,013	0,025	0,05	•	•				
17	0,013	0,025	0,08			•			
K	0,013	0,025	0,10				•	•	
	0,013	0,025	0,13						•
М	0,08	0,13	0,05	•	•				
	0,13	0,13	0,08			•			
	0,15	0,13	0,10				•	•	
	0,18	0,13	0,13						•
	0,13	0,13	0,08	•	•				
TT	0,20	0,13	0,13			•			
U	0,27	0,13	0,18				•	•	
	0,38	0,13	0,25						•

4 Type of insert

5 Cutting edge length

Comparison

Cutting edge length/I.C. (d)

			Sha	ape			
	С	D	R,S	Т	V	W	
(u)	Cutting edge length						
5,56						03	
6.35	06	07	06	11		04	
12,70	09	11	09	16	16	06	
15,88	16	19	15	22		08	
19,05	19	23	19	33			
25,40	25	31	25	44			

IC = Theoretical diameter of inscribed circle

6 Thickness

7 Insert with wiper edge/radius

8 Cutting edge condition

9 Direction of cutting

¹⁰ Internal Manufacturers designation

- E = Easy machining conditions, (soft workpiece materials, thin chips, pre-machined work pieces, rolled workpieces, good chip flow). Insert with geometry designation E have sharp cutting edges.
- ME= Medium to easy machining conditions
- M = Medium machining condition
- MD= Medium to difficult machining conditions
- D = Difficult machining conditions, (hard workpiece materials, thick chips difficult rough surfaces, intermittent cutting process, chip jamming). Insert with geometry designation D have strong (protected) cutting edges.
- 16 = The digit combination indicates the most suitable average chip thickness for the geometry under normal conditions ie. 0.16mm.

ISO milling inserts

All **RS** inserts are held in the cutter bodies using torx screws. The torque values are given in the following table. For optimum performance ensure that screws are coated with grease (molcote 1000 or similar) before insertion.

This will reduce friction and ensure the screws can be released when required.Please note that some clamping screws have left-handed threads!

The maximum figures are shown, generally a value between 75% and 100% should be used.

T	Thursday	Torque values Nm	
Torx screw	Inread M	Max	75%
T07	M2,2	1,2	0,9
T07	M2,5	1,5	1,5
T09	M3	2,0	1,5
T15	M3,5	4,0	3,0
T15	M4	5,0	3,8
T15	M4,5	6,8	5,0
T15	M5	6,8	5,0
T20	M4,5	6,8	5,0
T20	M5	6,8	5,0
T20	M6	10,0	8,0
T25	M8	12,0	10,0

Grade

All **RS** inserts are supplied in manufacturers grade T25M. The relationship between this designation and the ISO grades is given below.

Coated grades

Cross reference

M16

In many cases one insert will fit several cutters. The compatibility is shown in the following table.

RS Insert ISO code	Cutter description	RS stock no.	
APFT 1604 PDTR APFT 1604 PDR	Square shoulder cutter Square shoulder cutter Square shoulder cutter	50mm 63mm 80mm	848-717 848-723 848-739
SEKN 1203 AFN	Face cutter	63mm	848-694

Insert specifications

APFT 1604 PDTR D15 T25M

APFT 1604 PDR M12 T25M

SEKN 1203 AFN E12 T25M

RS stock no. 848-751							
Tolerances (±mm)			Dimensions in mm				
1	S	m	1	S	B		
0.08	0.025	0.010	13.44	3.36	3.5		

SEKN 1203 AFTN M14 T25M

12.70

3.18

1.6

SEKR 1203 AFTN ME10 T25M

0.025

0.010

0.08

XCKX 13 T304 R ME10 T25M

SPKR 1203 EDTR ME12 T25M

TPKN 1603 PDTR MD12 T25M

The information provided in **RS** technical literature is believed to be accurate and reliable; however, RS Components assumes no responsibility for inaccuracies or omissions, or for the use of this information, and all use of such information shall be entirely at the user's own risk. No responsibility is assumed by RS Components for any infringements of patents or other rights of third parties which may result from its use. Specifications shown in RS Components technical literature are subject to change without notice.