

Audio power amplifiers

A range of audio power amplifiers with output powers. These versatile devices form the basic building blocks for constructing high quality amplifiers using a minimum of additional components.

LM380

An audio power amplifier with a fixed gain of 50 (34dB). The input stage allows inputs to be ground referenced or ac coupled as required and the output is automatically centred at one half of the supply voltage. The device is protected with both current limiting and thermal shutdown circuity and is housed in a 14 pin DIL package.

Maximum ratings

Supply voltage	22V
Peak current	1.3A
Package dissipation (internally limited)	10W
Input voltage	±0.5V
Max. junction temperature	150°C
Operating temperature range	0 to 70°C

Typical electrical characteristics

Fixed loop gain	50 (34dB)
Input sensitivity	150mV r.m.s.
Input resistance	150k Ω
Supply voltage range	8 to 22V max.
Bandwidth	100kHz
Quiescent current	7mA

Thermal data

Thermal resistance: in free air above 25°C__100°C/W with 4 sq. in heatsink (PCB)_

Note:

* Pins 3, 4, 5, and 10, 11, 12 (output ground) and Pin 7 (input ground) should all be connected to supply ground. Two square inches of PCB

LM380 RS stock number 306-819 **TBA820 M** RS stock number 302-491 **TDA2030** RS stock number 307-424 **TDA2004** RS stock number 309-543

Applications

Single ended output amplifier

A simple amplifier can be constructed using only a few external components ($P_{out} = 2W V_{CC} = 20V$) as shown in Figure 1. The input may be from crystal or ceramic pick-ups, cartridge or microphone, or may be from the LM381.

Bridge amplifier

For an increase in output, two amplifiers may be connected in the configuration shown below. This provides twice the voltage swing across the load for a given supply. A 15Ω load is necessary due to current limitations and therefore the overall output power is increased by a factor of two over the single amplifier.

copper or metal strip connected to the central output ground pins of the IC will provide sufficient heatsinking to enable a 2 Watt output to be obtained at $V_{CC} = 20V$, $Z_o = 8\Omega$.

TBA 820M

The **RS** TBA 820M is a monolithic integrated audio amplifier in an 8 pin dual-in-line plastic package. Featuring a wide supply voltage range of 3 to 16V, low quiescent current and good ripple rejection, this IC is ideally suited for use in battery powered equipment. Maximum output power is 2W into 8Ω at a supply voltage of 12V.

Absolute maximum ratings

Supply voltage	Vs	16V
Output peak current	I	1.5A
Power dissipation at $T_{amb} = 50^{\circ}C$	P_{tot}	1W
Storage and junction temperature	T _{sta} , T _i	-40 to 150°C

Thermal data

Thermal resistance junction-ambient $R_{thj\text{-}amb}$ 100°C/W max.

Electrical characteristics	V_{s}	= 9V,	$\mathrm{T}_{\mathrm{amb}}$	= 25°C	C unless	otherwise	specified
----------------------------	---------	-------	-----------------------------	--------	----------	-----------	-----------

Parameter	Symbol	Condit	ions	Min.	Тур.	Max.	Unit
Supply voltage	Vs			3		16	V
Quiescent output voltage (Pin 5)	Vo			4	4.5	5	V
					(Vs/2)		
Quiescent drain current	Id				4	12	mA
Bias current (Pin 3)	Ib				0.1		μA
Output power	Po	d = 10%	f = lkHz				
		$R_f = 120\Omega$					
		$V_{s} = 12V$	$R_L = 8\Omega$		2		W
		$V_s = 9V$	$R_L = 4\Omega$		1.6		W
		$V_s = 9V$	$R_L = 8\Omega$	0.9	1.2		W
		$V_s = 6V$	$R_L = 4\Omega$		0.75		W
		$V_{s} = 3.5V$	$R_L = 4\Omega$		0.25		W
		$V_s = 3V$	$R_L = 4\Omega$		0.20		W
Input sensitivity	V _{I(rms)}	$P_o = 1.2W$	$R_f = 33\Omega$		16		
		$R_L = 8\Omega$					mV
		F = 1kHz	$R_f = 120\Omega$		60		
		$P_o = 50 mW$	$R_f = 33\Omega$		3.5		
		$R_L = 8\Omega$					mV
		f = 1kHz	$R_f = 120\Omega$		12		
Input resistance (Pin 3)	R _I	f = 1kHz			5		MΩ
Frequency response (-3dB)	В	$R_{L} = 8\Omega$	$C_B = 680 \text{ pF}$	2	25 to 7,000		Hz
		$R_f = 120\Omega$	$C_B = 220 \text{ pF}$	2	5 to 20,000		
Distortion	d	$P_o = 500 \text{mW}$	$R_f = 33\Omega$		0.8		
		$R_L = 8\Omega$					%
		f = 1kHz	$R_f = 120\Omega$		0.4		
Voltage gain (open loop)	G _v	F = 1kHz	$R_L = 8\Omega$		75		dB
Voltage gain (closed loop)	G _v	$R_{L} = 8\Omega$	$R_f = 33\Omega$		45		dB
		f = 1kHz	$R_f = 120\Omega$		34		
Input noise voltage (*)	e _N				3		μV
Input noise current (*)	I _N				0.4		nA
Signal to noise ratio (*)	S + N	$P_o = 1.2W$	$R1 = 10K\Omega$		80		
	 N	$R_L = 8\Omega$					dB
		$G_v = 34 dB$	Rl - 50k Ω		70		
Supply voltage rejection	SVR	$R_{L} = 8\Omega$					
		$f_{(ripple)} = 100Hz$					
		$C6 = 47 \mu F$					
		$R_f = 120\Omega$			42		dB

(*)B = 22Hz to 22kHz.

TDA 2030

The RS TDA 2030 is a high quality monolithic audio amplifier IC capable of producing an output power of up to 21W maximum into a 4Ω load. The device has a very low harmonic and crossover distortion. The THD is approx. 0.1% with output powers from 0.1 to 8W (8 Ω load). The TDA 2030 features built in short circuit protection, thermal shut down and safe operating area protection.

Maximum ratings

+18V
V _s
±15V
_3.5A
_20W
150°C

Thermal data

Thermal resistance junction to case _____3°C/W max.

Electrical Characteristics	$\Gamma_{amb} = 25^{\circ}C,$	$V_{\rm S} = \pm 14 V \text{ unless}$	otherwise specified
-----------------------------------	-------------------------------	---------------------------------------	---------------------

Parameter Test conditions		Min.	Тур.	Max.	Unit
Supply voltage V _S		±6 (+12)		±18 (+ 36)	V
Input offset voltage V _{in} (offset)	$V_{\rm S} = \pm 18 V$		±2	±20	mV
Quiescent drain current I _d	$V_{\rm S} = \pm 18 V$		40	60	mA
Input bias current I _b	$V_{\rm S} = \pm 18 V$		0.2	2	μA
Input offset current I _{in} (offset)	$V_{\rm S} = \pm 18 V$		±20	±200	nA
Output power P _O	wer P_0 d = 13% V _s = 30V		17	21	W
	$f = 1 \text{kHz} Z_0 = 4 \Omega G_V = 30 \text{dB}$				
Input resistance R _{in}	+ve I/P	0.5	5		MΩ
Voltage gain G _V Open Loop			90		dB
Input noise voltage e_n BW (-3dB) = 22Hz to 22kHz			3	10	μV
	$R_L = 4\Omega$				
Supply voltage rejection ratio	$Z_o = 4\Omega$ $G_V = 30dB$	40	50		dB
	$f_{ripple} = 100Hz$				

Figures in brackets refer to operating limits

Applications

Power amplifier-dual supply rail

The circuit shown in Figure 12 will deliver up to 13W into a load impedance of 4Ω or 10W into a load impedance of 8Ω with distortion approx. 0.1%. A suitable pre-amplifier is the LM381. A printed circuit board is available **RS** stock no. 434-576. Suitable heatsink **RS** stock no. 401-497 (per stereo pair). A suitable power supply is shown in Figure 14.

Figure 12 Dual supply rail amplifier 100n C4 IN4001 IN400 TDA2030 22 100 4Ω **[** 3k? 100r 100L 4μ Vs Decoupling capacitors C3, C4, C6 and C7 should be mounted as close as possible to the integrated circuit to minimise the effect of lead lengths. The maximum input, before clipping, with $V_s = \pm 15V$ and output load 10Ω is 283mV rms.

Power amplifier-dual supply rail

The circuit shown in Figure 13 gives a similar performance to the dual supply rail version. A suitable regulator for a power supply is the **RS** 317K **RS** stock no. 306-976 or High Power Regulator **RS** stock no. 308-152. The printed circuit board **RS** stock no. 434-576 will accommodate single or dual rail amplifier circuits.

TDA 2004

The **RS** TDA 2004 is a Class B, dual, audio power amplifier in an 11 lead tab mounting plastic package. Each amplifier is capable of delivering up to 9W into a 4Ω load (17V supply, THD 10%). The two amplifiers may be operated as a stereo pair or connected in a bridge connection to increase power output to four times the power available in a single ended mode. Built-in short circuit protection, thermal shut down and safe operating area limiting are included to increase device reliability. A ready made printed circuit board is available under **RS** stock no. 434-598 which can accommodate either the stereo amplifier circuit or bridge amplifier as shown in Figures 18 and 19 respectively.

Absolute maximum ratings

Supply voltage V _S	18V
Peak supply voltage (for 50ms)	40V
Output peak current (non repetitive t = 0.1 ms)	4.5A
Output peak current (repetitive f≥10Hz)	3.5A
Power dissipation at $T_{CASE} = 90^{\circ}C$	30W
Storage and junction temperature40 to +15	50°C

Thermal data

Thermal resistance junction to case $(\theta jc)_3$ °C/W max. Thermal shutdown case temperature_____135°C typ.

Electrical characteristics (Refer to the test circuit, $T_{amb} = 25^{\circ}C$, $G_{V} = 50dB$, $R_{th (heatsink)} = 4^{\circ}C/W$, unless otherwise specified)

	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vs	Supply voltage			8		18	V
Vo	Quiescent output voltage	$V_{\rm S} = 14.4 V$		6.6	7.2	7.8	V
		$V_{\rm S} = 13.2 V$		6.0	6.6	7.2	V
Id	Total quiescent drain current	$V_{\rm S} = 14.4 V$			65	120	mA
		$V_{\rm S} = 13.2 V$			62	120	mA
I _{SB}	Stand-by current	Pin 3 grounded			5		mA
P_{o}	Output power (each channel)	f = 1 kHz	d = 10%				
		$V_{\rm S} = 14.4 V$					
			$R_{\rm L} = 4\Omega$	6	6.5		W
			$R_{\rm L} = 3.2 \Omega$	7	8		W
			$R_{L} = 2\Omega$	9	10(*)		W
			$R_{\rm L} = 1.6 \Omega$	10	11		W
		$V_{\rm S} = 13.2 V$		-			
			$R_{L} = 3.2 \Omega$	6	6.5		W
			$R_{\rm L} = 1.6 \Omega$	9	10		W
		$V_s = 16V$					
-			$R_{\rm L} = 2\Omega$		12		W
d	Distortion (each channel)	f = I k H z					
		$V_{\rm S} = 14.4V$	$R_{L}=4\Omega$				<u> </u>
		$P_0 = 50 \text{mVV} \text{ to } 4 \text{VV}$	D		0.2	1	%
		$V_{\rm S} = 14.4V$	$R_{\rm L} = 2\Omega$		0.0	,	0.4
		$P_0 = 50 \text{mVV}$ to 6VV	D		0.3	1	%
		$V_{\rm S} = 13.2V$	$R_{\rm L} = 3.2 \Omega$		0.0	,	07
		$P_0 = 50 \text{ mVV to 3VV}$			0.2	1	%0
		$V_{\rm S}$ =13.2V	$R_{\rm L} = 1.6\Omega$		0.0	,	07
	Oracian talla	$P_0 = 50mVV$ to 6VV			0.3	1	%
CI	CIOSSIAIK	$V_{\rm S} = 14.4V$	D = 40				
		$V_0 = 4V_{\rm rms}$	$R_{\rm L} = 422$	FO	60		JD
		I = I K H Z $f = 10 H H \pi$	P = FVO	50	00		dB dD
V	Input constitution	f = 10kHz	Ng - 5K 32	40	40		ub
vi	Input sensitivity	D = 1M					
		$P_0 = 100$			6		mV
		R = 320			55		mV
V	Input saturation voltage	NL - 0.232		300	0.0		mV
R.	Input resistance (non inverting	f = 1 k Hz		70	200		kQ
±1	input	1 11012		10	200		
R _i	Input resistance (inverting input)	f = lkHz			10		kΩ
fL	Low frequency roll off (-3dB)	$R_L = 4\Omega$				35	Hz
		$R_{\rm L} = 2\Omega$				50	Hz
		$R_{\rm L} = 3.2 \Omega$				40	Hz
		$R_L = 1.6\Omega$				55	Hz

 $\label{eq:Electrical characteristics} \mbox{ (Refer to the test circuit, $T_{amb} = 25^{\circ}C$, $G_v = 50dB$, $R_{th (heatsink)} = 4^{\circ}C/W$, unless otherwise the test circuit, $T_{amb} = 25^{\circ}C$, $G_v = 50dB$, $R_{th (heatsink)} = 4^{\circ}C/W$, unless otherwise the test circuit, $T_{amb} = 25^{\circ}C$, $G_v = 50dB$, $R_{th (heatsink)} = 4^{\circ}C/W$, unless otherwise the test circuit, $T_{amb} = 25^{\circ}C$, $G_v = 50dB$, $R_{th (heatsink)} = 4^{\circ}C/W$, $W_{th (heatsink)} = 4^{\circ}C/W$$ specified)

	Parameter	Test cond	litions	Min.	Тур.	Max.	Unit
f _H	High frequency roll off (-3dB)	$\begin{aligned} R_{\rm L} &= 4\Omega \\ R_{\rm L} &= 2\Omega \\ R_{\rm L} &= 3.2\Omega \\ R_{\rm L} &= 1.6\Omega \end{aligned}$		15 15 15 15			kHz kHz kHz kHz
G _v	Voltage gain (open loop)	f = 1kHz			90		dB
G _v	Voltage gain (closed loop)	f = 1kHz		48	50	51	dB
	Closed loop gain matching				0.5		dB
e _N	Total input noise voltage	$R_g = 10k\Omega(^\circ)$			1.5	5	μV
SVR	Supply voltage rejection	$f_{ripple} = 100Hz$	$R_g = 10k\Omega$				
		$C_3 = 10 \mu F$	$V_{ripple} = 0.5 V_{rms}$	35	45		dB
n	Efficiency	$\label{eq:starsess} \begin{array}{l} V_{\rm S} = 14.4 V \\ R_{\rm L} = 4 \boldsymbol{\Omega} \\ R_{\rm L} = 2 \boldsymbol{\Omega} \\ V_{\rm S} = 13.2 V \\ R_{\rm L} = 3.2 \boldsymbol{\Omega} \\ R_{\rm L} = 1.6 \boldsymbol{\Omega} \end{array}$	$f = 1 \text{kHz}$ $P_{O} = 6.5 \text{W}$ $P_{O} = 10 \text{W}$ $f = 1 \text{kHz}$ $P_{O} = 6.5 \text{W}$ $P_{O} = 10 \text{W}$		70 60 70 60		% % %
T _{sd}	Thermal shut down case temperature	$V_{\rm S} = 14.4V$ $f = 1kHz$ $P_{\rm tot} = 5.5W$	$R_{\rm L} = 4\Omega$	125	135		°C

(*) 9.3W without bootstrap. (°) Bandwidth filter: 22Hz to 22kHz.

Applications

(Ready made PCB RS stock no. 434-598, is suitable for both stereo and bridge amplifiers.)

Note: In either case, the amplifier is likely to be unstable with the input(s) left open. If this is a possibility in your application a $47k\Omega$ resistor should be connected between the input(s) and the input ground track.

The information provided in **RS** technical literature is believed to be accurate and reliable; however, RS Components assumes no responsibility for inaccuracies or omissions, or for the use of this information, and all use of such information shall be entirely at the user's own risk. No responsibility is assumed by RS Components for any infringements of patents or other rights of third parties which may result from its use. Specifications shown in RS Components technical literature are subject to change without notice.