

Peristaltic pump system

Peristaltic pump action

A typical peristaltic pump mechanism is shown in Figure 1. The advancing roller occludes the tube which, as it recovers to its normal size, draws in fluid which is trapped by the next roller (in the second part of the cycle) and expelled from the pump (in the third part of the cycle). This is the peristaltic flow-inducing action.

The flow-inducer (i.e. the roller) and tube together make the pump, and both are equally important.

The flow rate depends mainly on the internal diameter of the tube and the speed at which the rollers advance. Suction lift capability depends on the restitution power of the tube. If the tube does not restitute fully before the advance of the next roller, then the flow rate will be reduced.

For any particular flow rate, accuracy is maximised by using smaller bore tubing and a higher pump speed. For maximum tube life, however, it is best to use larger bore tubing and a slower pump speed.

System 101

The advantages of peristaltic pumping include:

- The pump does not contaminate the fluid
- The fluid does not contaminate the pump
- The peristaltic pumping action is gentle
- Peristaltic pumps are self-priming, non-siphoning and can run dry.

Applications

There are many laboratory and industrial processes where the ability to confine the fluid to a tube is valuable. Instead of stripping and cleaning the pump, it is only necessary to fit a new tube which is very simple. A sterile tube creates a sterile pump.

Typical application areas include: pharmaceuticals, fermentation, food processing, beverage dispensing, inks and photographic solutions, as well as abrasive and aggressive fluids. Provided a fluid will pass through a tube, without causing a chemical reaction, then a peristaltic pump can speed its flow, control its flow rate, or dispense it in precise volumes.

232-5496

Pump head (RS stock no. 330-812)

Comprising a panel mounting housing, with a hinged transparent cover, that contains the dual-roller rotating head. This head fits on to the shaft of the drive motor (RS stock no. 255-9598, etc available separately). The sprung roller construction ensures maximum tube life. The flow direction can be reversed by reversing the roller head rotation (i.e. direction of motor rotation). The head accepts tubing with bore sizes 0.5 to 4.8mm with a 1.6mm wall thickness.

Material specification

Rollers	MoS2 filled nylon 6
Roller head	Aluminium alloy
Hinged cover	Polycarbonate
Pump Housing	Acetal copolymer

Mounting plate (RS stock no. 330-828)

Matt black steel, pre-drilled 1453 8031.4mm, face plate required for fitting between the pump head and the drive motor to form a complete sub-assembly. If the drive motor and pump head are to be mounted on an existing panel (so as to become an integral part of a piece of equipment) this plate is not required.

Tube life

Tube life depends on pumping speed, fluid temperature,= suction and deliver pressures and the chemical compatibility between the tube and the fluid (Table 1). Typically tube life when used with 101 pump head with 65rpm motor is in the region of 300 hours at zero delivery and suction pressure.

= This should be in the range -20° C to $+100^{\circ}$ C.

Flow rate

The flow rate for a given tube bore depends on the rotor speed and therefore on the d.c. motor drive voltage. The following flow rates are specified for pumping water at 20° C with zero suction and delivery heads.

Drive motor RS stock no.	Nom speed at 12Vdc	Flow rate ml/min. (L/hr) Bore (RS stock no.)					
		0.5	0.8	1.6	3.2	4.8	
		184-5905	184-5911	184-5927	184-5933	330-834	
*255-9598	130rpm	2.8 (0.2)	6.5 (0.4)	28.3 (1.7)	105.5 (6.33)	212.12.7	
255-9605	65rpm	1.4 (0.08)	3.2 (0.2)	14.2 (0.8)	52.8 (3.2)	106 (6.4)	
255-9611	40rpm	0.85 (0.05)	2.0 (0.12)	8.8 (0.5)	32.5 (1.9)	65 (3.9)	
255-9627	20rpm	0.42 (0.03)	1.0 (0.06)	4.4 (0.3)	16.3 (1.0)	32.6 (2.0)	
255-9649	8rpm	0.16 (0.01)	0.4 (0.02)	1.8 (0.1)	6.5 (0.4)	12.7 (0.8)	

*This motor should only be used when higher flow rates are required. The operating life of the motor and tubing will be reduced to approximately half the values obtained when using other motors. This is due to increased loading on the motor and higher strain in the tubing.

Speed control board (RS stock no. 320-584)

This Eurocard format board gives a speed control ratio better than 10 to 1 with all RS 12Vdc motors up to 20 Watts.

It is capable of manual speed control, remote stop and accepting a remote speed control signal input. With the addition of extra components to the standard board, options of direction reverse, power on LED, ac power supply input, board mounted speed control potentiometer and maximum speed (prime) switch are available.

The board may be powered from a 20V to 30Vdc supply (12W for a 101 system). The power output transistor for both series of drive motor (TIP 141) is mounted remote from the board. For all systems an adequate heatsink must be provided, suggested area 225cm2 (**RS** stock no. 401-497) for system 101.

313S/D Peristaltic pump (**RS** stock no. 229-3440) Technical information and features

- Flow rated from 0.07 ml/min to 2000 ml/min
- Reversible operation
- \bullet Front panel mounted manual speed control
- Selectable dual voltage operation 100-120V or 220-240V
- lacksquare Rapid and simple tube loading flip-top pumphead
- ullet Snap fit extension pumpheads
- Supplied fitted with a 313DW (229-3456) three roller pumphead to suit 1.6mm wall thickness tube.
- Capable of driving up to 5 x 313 (**RS** stock no. 305-2363) Auxiliary pumpheads and 1 x 313DW pumphead flow rate ranges (ml/min)

		Tube bore and flow (ml/min)						
	rpm	0.5mm	0.8mm	l.6mm	3.2mm	4.8mm	6.4mm	8.0mm
313S/D	20-400	0.60-12	1.4-28	5.4-108	2.0-400	44-880	72-1440	10-2000

313S/D manual control pumps

Specification	
Weight:	5.5kg
Operational temperatu	re range:5°C to 40°C
Noise:	<70dBA at 1m
Control ratio:	20:1
Standards:CH	E, BS0800, IEC335-1, EN60529 (IP31)
Supply:lph,	00-120V, 220-240V, 50/60Hz, 100VA
Materials of constru	ction
Drive:	Painted steel casework
Body rear:	Glass filled polypropylene
Body front, body front	extension:IXEF
Mounting plate, track a	nd lever:IXEF
Rotor, tube clamp:	Glass filled Nylon
Mounting plate locking	tabGlass filled Nylon
Rollers	MoS2 filled Nylon 6 (Nylatron)
Spindles	Electroless nickel plated
	hardened steel
Fixings:	Stainless steel
Sealed bearings:	Carbon steel
The nump 229-3440 is	supplied with 1 x 313 DW (RS 229-

The pump 229-3440 is supplied with 1 x 313 DW (RS 229-3456) pumphead. The total number of pumpheads can be increased by using the 313DW pumphead and the required number of auxiliary 313 x (RS 305-2363) pumpheads. Refer to table below for further details.

Maximum of heads								
Tube bore in mm								
Tube	Pressure	0.5	0.8	1.6	3.2	4.8	6.4	8.0
Silicone	0.5 bar	6	6	5	3	2	2	1
	2 bar	6	6	5	3	2	1	1
Marprene	0.5 bar	6	6	4	2	2	1	1
	2 bar	6	6	4	2	2	1	1

Tubing

Three metre lengths of Silicone and Marprene tubing with 1.6mm wall thickness are available in a range of Bore sizes. Both are capable of being steam sterilised and are suitable for transporting a wide range of chemicals. Please refer to tables below for compatible chemicals and for **RS** stock numbers.

Silicone

This food and medical quality material meets USP Class VI standards and is listed under the UK Water Fittings Bylaws Scheme. Colour - Translucent

Marprene®

Marprene is proven superior in applications where it is chemically compatible, it is the most often recommended tubing material. Marprene has a wide chemical compatibility and is highly resistant to oxidising agents such as ozone, peroxides and hypochlorite. Marprene is also opaque to both visible and ultra-violet light, and maintains low permeability to gases such as oxygen, carbon dioxide and nitrogen. Colour - Beige. Marprene meets USDA standards for food handling and complies with FDA 21 CFR 177.260.

How to choose the right tubing material

The best way to select a tube is to first decide which materials are chemically suitable, and then choose the one which best meets the physical demands of the application.

For maximum tube life, use a large bore tube at low speed. For maximum flow rate use the largest tube at maximum speed. For maximum accuracy, use a small bore tube at maximum speed. Suction lift depends on the tube restituting fully before the advance of the next roller. If it does not, the flow rate will be reduced. For maximum suction lift or pressure, use the smallest practicable bore size of tubing and run the pump at the slowest possible speed. Always make an immersion test before choosing a tube material for critical applications. Immerse a short length of the tubing in a closed container of the fluid for 48 hours, and then examine it for signs of attack, swelling, embrittlement or other deterioration.

	Silicone	Marprene		
Bore Size	RS Stock Nos.			
0.5mm	184-5905	-		
0.8mm	184-5911	-		
1.6mm	184-5927	228-2046		
3.2mm	184-5933	228-2052		
4.8mm	330-834	228-2068		
6.4mm	440-521	228-2074		
8.0mm	320-578	228-2096		

232-5496

Suitable	Bioprene /	Silicone	Suitable	Bioprene /	Silicone
X Not suitable	Marprene		X Not suitable	Marprene	
Acetaldehyde			"Cellosolves"		
Acetamide			Chrome plating solutions		
Acetic, acid, cold			Chromic acid		Х
Acetic, acid, hot			Chromium salts		
Acetone	Х		Citric acid		
Acetylene			Coconut oil	Х	
''Alamask''		2	Cod liver oil	Х	
Aldehydes			Coffee		
Aliphatic hydrocarbon			Copper salts		
solvents			Corn oil	Х	
Alum			Detergent solutions		
Aluminium chloride			Dextrose		
Aluminium salts			Diacetone alcohol		
Aluminium sulphate			Diatomaceous slurry		
Ammonia gas, cold			Dibenzyl ether		
Ammonia gas, hot			Dibutyl phthalate	Х	
Ammonium hydroxide			Diethylamine		
Ammonium nitrate			Diethylene glycol		
Ammonium phosphate			Dimethyl formamide	Х	
Ammonium salts			Dioxane		
Ammonium sulphate			''Dowtherm'' fluids		
Amyl alcohol		Х	Essential oils		
Aniline, cold			Ethanolamine		
Aniline, hot			Ethers	?	
Aromatic hydrocarbons			Ethyl acetate	Х	
Arsenic salts			Ethyl acetoacetate	Х	
Barium chloride			Ethyl alcohol		
Barium hydroxide			Ethylene		
Barium salts			Ethylene diamine		
Beer			Ethylene glycol		
Beer wort			Ethylene oxide		Х
Beet sugar liquors			Ferric chloride		
Benzaldehyde		Х	Ferric salts		
Benzoic acid	Х		Ferric sulphate		
Benzyl alcohol			Ferrous chloride		
Bleaching liquors			Ferrous salts		
Blood			Ferrous sulphate		
Borax			Fluoborates		
Boric acid			Fluboric acid		
Brake Iluid		37	Fluosilicic acid		
Brightners, electroplating		X	Formaldehyde		
Butyl alcohol		37	Formamide		
Butraldenyde		X	Formic acid	V	
Butyric acia			Fumaric acid	X	
			Furtural		
Calcium chloride			Gelatine		
Calcium hydroxide			Clucose		
Calcium nitroto			Chycerine		
			Cold plating solution		
Cane gugar liquorg			Green sulphate liquor		
Carbitol			Hevaldebude		
Carbon diovide			Hydraulic oil		v
Carbon monoxide			Hydrobromic acid		X
Carbonic acid			Hydrochloric acid cold		77
Castor oil	x		Hydrochloric acid, bot		x
Caustic soda up to 50%	6		Hydrocyanic acid		17
Suusii souu up 10 00/0	0		i i jai oo jaino aota		

Suitable X Not suitable	Bioprene / Marprene	Silicone	Suitable X Not suitable	Bioprene / Marprene	Silicone
Hydrofluoric acid, cold		x	Piperidine		
Hydrogen gas		X	Polyethylene glycol		
Hydrogen peroxide	х	21	Potassium carbonate		
Hydrogen sulphide, dry		Х	Potassium chlorate		
Hydrogen sulphide, wet		X	Potassium cyanide		
Hyphochlorous acid			Potassium dichromate		
Iodine			Potassium hydroxide		Х
Isobutyl alcohol			Potassium iodide		
Isopropyl alcohol			Potassium nitrate		
Isopropyl chloride			Potassium salts		
Kaolin			Producer gas Propul algobal		
Lactic acid, cold			Pyrrole		
Lard		77	Rubber latex		
Lead acetate		Å	Salicylic acid		
Linseed oil	v		Sea water		
Lithium grease	Λ		Sewage		
Live solution (KOH & Na0H)			Silver nitrate		
Magnesium ammonium			Skydrol 500B4		
sulphate			Soap solutions		
Magnesium chloride			Soda ash		
Magnesium hydroxide			Sodium aluminate		
Magnesium salts			Sodium bicarbonate		
Magnesium sulphate			Sodium bisulphate		
Malic acid			Sodium bisulphite		
Manganese salts			Sodium borate		
Melamine			Socium carbonate		
Mercuric chloride			Sodium chlorido		
Mercuric sulphate			Sodium cyanide		
Mercury			Sodium dichromate		
Methyl bromide			Sodium hydroxide	6	
Methyl ethyl ketone			Sodium hyprochlorite	-	
Methyl formate			Sodium metaphosphate		
Methyl methacrylate			Sodium nitrate		Х
Milk			Sodium nitrite		
Mineral oils	Х		Sodium perborate		
Molasses			Sodium phosphates		Х
Mustard			Sodium silicate		
Natural gas			Sodium sulphate		
Nickel chloride			Sodium sulphide		
Nickel salts			Sodium sulphite		
Nitric acid	4	Х	Sovabean oil	v	
Nitrogen		77	Stannic chloride	Λ	
Nitrogen oxides		X	Stannous chloride		
Oila animal			Steam		Х
Oils, annia Oils, vegetable			Stearic acid		
Oxalic acid			Sucrose solutions		
Oxygen. cold			Sulphur	Х	
Ozone			Sulphur chloride	Х	Х
Palmitic acid			Sulphur dioxide		
Perchloric acid		Х	Sulphur hexafluoride		
Perchloroethylene	Х		Sulphur dioxide, dry		
Phosphoric acid		Х	Sulphur trioxide, dry		T 7
Phthalic acid			Sulphuric acid 10% cold		X
Picric acid		Х	Sulphuric acid 10% hot		X
			Supnuric acid 10-75% cold		X

232-5496

Suitable X Not suitable	Bioprene / Marprene	Silicone
Sulphuric acid 10-75% hot Sulphurous acid Tannic acid Tanning extracts Tar		X X
Tartaric acid Terpineol Tertiary butyl catechol Tin chlorides Titopium diavida		Х
Turpentine Urea Uric acid Vegetable oils Vinegar Water, fresh Water, sea Water, steam Whiskey Wine Wort Yeast		Χ
LINC SAITS		

l Short periods only, 2 Swells, 3 Up to 20C only, 4 Up to 30C only, 5 Up to 100C only, 6 Up to medium concentration.

RS Components shall not be liable for any liability or loss of any nature (howsoever caused and whether or not due to RS Components' negligence) which may result from the use of any information provided in **RS** technical literature.