
Thin Film Electroluminescent Graphic Displays

RS stock numbers 294-8601, 294-8617

Planar EL displays consist of a solid-state electroluminescent (EL) glass panel, an electronic control circuit, and a power supply.

The solid-state glass panel consists of a thin film luminescent layer sandwiched between transparent dielectric layers and a matrix of row and column electrodes. The electronic control circuit lights pixels by energising the phosphor of intersecting rows and columns.

This solid-state process creates displays that endure extreme conditions with exceptional tolerance to shock, vibration, temperature, and humidity, while response times remain less than one millisecond.

		RS stock no.	RS stock no.	Features and I
		294-8601	294-8617	• Excellent vi
Model Name		EL160.80.50	EL320.240.36	Hiệ
Matrix (col x Row)		160 x 80	320 x 240	Wi
Pixel pitch	in.:	0.20 x 0.020	0.014 x 0.014	Rapid displa
WxH	mm:	0.50 x 0.50	0.36 x 0.36	Space efficie
Viewing Area	in.:	3.2 1.6 (3.6)	4.5 x 3.4 (5.6)	• Low EMI en
W x H (diag)	mm:	80 x 40 (89)	115 x 86 (143)	Extremely r
Outline dimensions	in.:	4.3 x 2.3 x 0.8	5.8 x 4.1 x 0.8	 Reliable, lor
WxHxD	mm:	109 x 57 x 21	148 x 105 x 20	
Liminance		872	542	
cd/m² (fL)		(25) ²	(16)2	
Contrast ratio		48: 1	31:1	
Supply voltages (Vdc)		+5, +12	+5, +12	-
Typical power (W)		2.1	4.0	-
Operating temperature	e (°C) -	25 to +65	-25 to +65	-
Storage temperature (°C) -	40 to +85	-40 to +85	
Interface type		Z	Z	1
Features		ICE™,	quarter-VGA,	1
		extended temperature	ICEBrite™,	
		range available	extended temperature	
			range available	

298-4534

Specifications for **RS** stock nos 294-8601 & 294-8617

Performance characteristics are guaranteed when measured at 25°C with rated input voltage unless otherwise specified.

Control basics

The EL panel is a matrix structure with column and row electrodes arranged in an X-Y formation. Light is emitted when an AC voltage of sufficient amplitude is applied at a row-column intersection. The display operation is based on the symmetric, line-at-a-time data addressing scheme.

Power

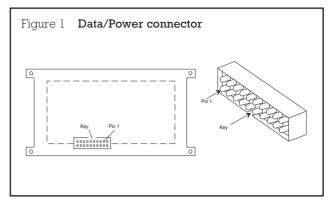
The supply voltages are shown in Table 1. All internal high voltages are generated from the display supply voltage (V_H) . The logic supply voltage (V_L) should be present whenever video input signals or V_H is applied. The minimum and maximum specifications in this manual should be met, without exception, to ensure the long-term reliability of the display. Planar does not recommend operation of the display outside these specifications.

Table 1. DC input voltage requirements

Parameter	Symbol	Min	Тур	Max	Absolute Max
Logic supply voltage	VL	4.75V	5V	5.25V	6V
Logic supply current at +5V	IL			40 mAdc	
Display supply voltage	V _H	10V	12V	15V	15V
Supply current at +12V	I _H		0.5A	0.80 Adc	
Power consumption 5 V/12 V					
@ 60 Hz Frame Rate			2.0W	2.9W	
@ 120 Hz Frame Rate			2.7W	4.2W	
@ 240 Hz Frame Rate			4.4W	7.0W	

CAUTION: Absolute maximum ratings are those values beyond which damage to the device may occur.

Description	Min	Max	Units	Notes
Absolute input voltage range	-0.3	5.5	V	VL = 5.0V
Video logic high voltage	70%	100%	VL	All input thresholds are
				CMOS
Video logic low voltage	0	20%	VL	
Video logic input current	-10	+10	μĀ	
Input capacitance	-	15	pF	


Table 2. Video input requirements

There is not overcurrent protection on either the $V_{\rm H}$ or $V_{\rm L}$ inputs to protect against catastrophic faults. **RS** recommends the use of a series fuse on the 12V supply (V_H). A general guideline is to rate the fuse at 1.8 to 2 times the display maximum current rating.

Connectors

Standard data and power connector

The RS displays, stock nos 294-8601 and 294-8617, use the Samtec STMM-110-01-T-D or equivalent connector. The mating connector and cable are supplied with display.

Table 3. J1 Connector pinouts

	-	_				
Pin	Signal	Description	Pin	Signal	Description	
1	V _H	+12V Power	2	V _H	+12V Power	
3	Selftest	Selftest Input ¹	4	GND	Ground	
5	VL	+5V Power	6	GND	Ground	
7	VS	Vertical Sync	8	GND	Ground	
9	HS	Horizontal Sync	10	GND	Ground	
11	VCLK	Video Clock	12	GND	Ground	
13	VID ₀	Video Data	14	GND	Ground	
15	VID ₁	Video Data	16	GND	Ground	
17	VID ₂	Video Data	18	GND	Ground	
19	VID3	Video Data	20	GND	Ground	
	l Conr	ogt pin 3 to ground for	normal di		tion	

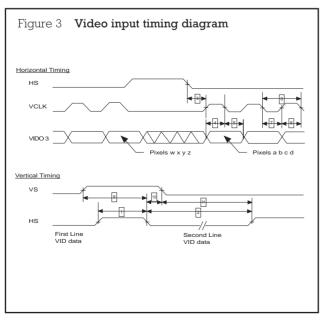

¹ Connect pin 3 to ground for normal display operation.

Interface information

Planar EL Small Graphics Displays (SGD) incorporate an interface that is similar to many LCD interfaces. This interface is supported by a a variety of off-the-shelf chip sets which take care of all display control functionality, freeing the system processor for other tasks. Designers select the chip set that best suits their particular architecture and price point. This 4-bit LCD-type video interface provides a low cost, flexible method for controlling display brightness and power consumption.

Video input signals

The end of the top line of a frame is marked by VS, vertical sync signal as shown in Figure 2. The end of each row of data is marked by HS. The VS signal may be independently set to a CMOS low level at any time for longer than one frame period. During the time of VS inactivity the display is blank. Halting VS results in a standby condition to minimise power usage.



Timing is compatible with LCD graphics controllers such as the SMOS 1335, 1353 or C & T 65535.

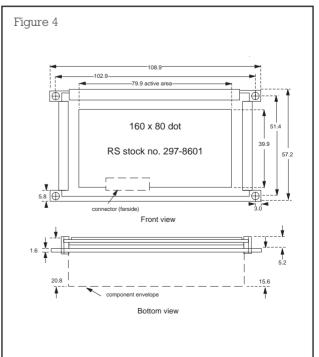
Num	Description	Symbol	Min.	Тур.	Max.	Units
1	HS high time	tHSh	100			ns
2	HS low time	tHS1	40			tVCLK
3	HS to VCLK rising edge	tHSsu	95			ns
4	VID setup to VCLK	tVIDsu	50			ns
5	5 VID hold from VCLK		50			ns
6	6 Video clock period		140			ns
	VCLK rise, fall time	tVCLKrf		10	15	ns
7	VCLK low width	tVCLK1	30			ns
8	VCLK high width	tVCLKh	30			ns
9	VS high setup to HS low	tVShsu	140			ns
10	VS hold after HS	tVShd	140			ns
11	VS low setup to HS high	tVSlsu	140			ns
12	HS period	tHS	51			μs
	VS period	tVS	80			tHS
	Frame Rate	fVS	0		240	Hz

Table 4. Video input descriptions

Input signals VID0 through VID3 contain the video data for the screen. Pixel information is supplied from left to right and from top to bottom four pixels at a time. Video data for one row is latched on the fall of HS.

Self-test mode

The display incorporates a self-test mode composed of two patterns displayed for approximately two minutes each, and then repeated. The patterns are as follows; *Full ON* and $l \ge l$ *Checkerboard*. The self-test mode is entered by leaving pin 3 unconnected or pulled high.


Note: Pin 3 must be connected to Ground for normal display operation.

Optical Table 5. Optical characteristics.

	L	uminance	
L _{on} (areal), min	40 cd/m2	screen centre, 120Hz frame rate	
L _{on} (areal), min	78 cd/m2	screen centre, 240Hz frame rate	
L _{off} (areal), max	0.3 cd/m2	3 points: centre plus two ends	
		measured .75 \pm 0.25" from adjacent	
		display edges, @ 240Hz.	
	No	n-uniformity	
All pixels fully lit	35%	Maximum difference between two of	
		five points, using the formula:	
		LNU%=[1- (min_lum/max_lum)] x 100%	
1	Luminance va	ariation (temperature)	
Maximum	±20%	Across operating temperature range	
	Luminano	ce variance (time)	
Maximum	<20%	10,000 hours at 25°C ambient	
	Vie	ewing Angle	
Minimum	160°		
	Co	ontrast ratio	
Typical	50:1	@500 lux ambient, 240Hz frame rate	

Dimming

There are two standard methods for dimming the display. Frame rate dimming allows the brightness of the display to be lowered proportionally by reducing the frame rate. Frame rate dimming is performed within the application by lowering the frame rate of the video input signals. Because brightness is proportional to frame rate, the display can be dimmed by adding pauses between every horizontal period. The lowest useable frame rate (brightness) is dependent on the perceived flicker of the displayed image, but will most likely be around 60Hz.

Installation and Handling

Do not drop, bend, or flex the display. Do not allow objects to strike the surface of the display.

CAUTION: The display uses CMOS and power MOS-FET devices. These components are electrostatic sensitive. Unpack, assemble, and examine this assembly in a static-controlled area only When shipping, use packing materials designed for protection of electrostatic-sensitive components.

Mounting EL displays

Properly mounted, EL displays can withstand high shock loads as well as severe vibration found in demanding applications. However the glass panel used in an EL display will break if subjected to bending stresses, high impact, or excessive loads.

Avoid bending the display. Stresses are often introduced when a display is mounted into a product. Ideally, the mounting tabs of the display should be the only point of contact with the system. Use a spacer or boss for support; failure to do so will bend the display and cause the glass to break. The instrument enclosure or frame should not flex or distort in such a way that during use the bending loads might be transferred to the display. Mounting surfaces should be flat to within ± 0.6 mm (± 0.25 "). Use all the mounting holes provided. Failure to do so will impair the shock and vibration resistance of the final installation.

CAUTION: Properly mounted, this display can withstand high shock loads and severe vibration in aggressive environments. However, the glass panel used in this display will break when subjected to bending stresses, high impact, or excessive loads.

To prevent injury in the event of glass breakage, a protective overlay should be used on the viewer side of the display.

WARNING: These products generate voltages capable of causing personal injury (high voltage up to 235Vac). Do not touch the display electronics during operation.

Cable length

A maximum cable length of 600mm (24in) is recommended. Longer cables may cause data transfer problems between the data transmitted and the display input connector. Excessive cable lengths can pick up unwanted EMI. There are third party products which allow this maximum cable length to be exceeded.

Cleaning

As with any glass or coated surface, care should be taken to minimise scratching. Clean the display glass with mild, water-based detergents only. Apply the cleaner sparingly to a soft cloth, then wipe the display. Disposable cleaning cloths are recommended to minimise the risk of inadvertently scratching the display with particles embedded in a re-used cloth. Particular care should be taken when cleaning displays with anti-glare and anti-reflective films.

Avoiding burn-in

As with other light emitting displays, use a screen saver or image inversion to avoid causing burn-in on the display. Displaying fixed patterns on the screen can cause burn-in, where luminance variations can be noticed.

RS Components shall not be liable for any liability or loss of any nature (howsoever caused and whether or not due to RS Components' negligence) which may result from the use of any information provided in **RS** technical literature