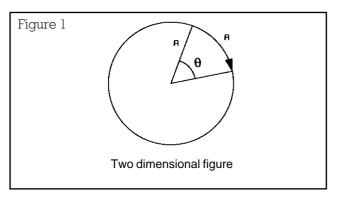


# **Photodiodes**

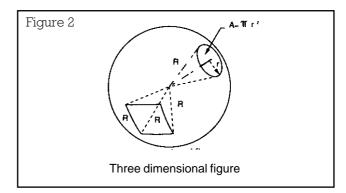

## Basics of photometry

This is a brief introduction to the basics of photometry. To be able to understand this subject better a brief review of geometric principles utilised is required.

## Geometric principles

#### Radian

In plane geometry the angle whose arc is equal to the radius generating it is called a radian. Therefore, if C = 2 R (Circumference of a circle)  $2 R = 360^{\circ}$ . Radian =  $180^{\circ}/=57.27^{\circ}$  (approx.).




Other abbreviations used.

- Ae = Area of emitting (or reflecting) surface
- Ap = Apparent area of an emitting source whose image is projected in space and viewed at some angle, .
- Ad = Detection area. Whether a physical target or merely a defined spatial area, it is the area of interest.

#### Steradian

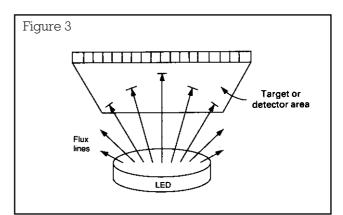
In solid geometry one steradian is the solid angle subtended at the centre of a sphere by a portion of the surface area equal to the square of the radius of the sphere. Therefore, if  $AREA/R^2 = 1 = 1$  steradian and the area on the surface of a sphere equals 4  $R^2$ , then 4  $R^2/R^2$  or 4 steradians of solid angle about the centre of a sphere. The steradian is usually abbreviated as STER.



# Photometric Terminology

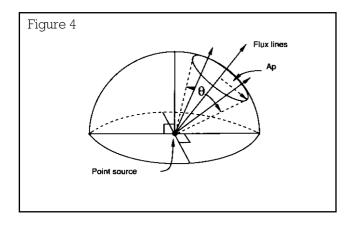
#### Flux (Symbol F)

Any radiation, whether visible or otherwise, can be expressed by a number of FLUX LINES about the source, the number being proportional to the intensity of that source. This LUMINOUS flux is expressed in LUMENS for visible radiation.


#### Luminous emittance (Symbol L)

A source measurement parameter. It is defined as the ratio of the luminous flex emitted from a source to the area of that source, or L = F/Ae. Typically expressed in units of:

lumens/cm² or one PHOT, lumens/m² or one LUX (or one METRE CANDLE), lumens/ft² or one FOOT CANDLE.


#### Illuminance (Symbol E)

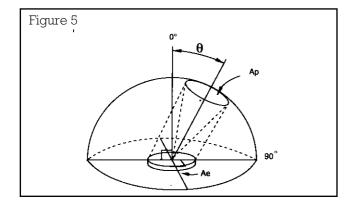
This is a target or detector area measurement paragraph meter. It is the ratio of flux lines incident on a surface to the area of that surface or E = L/Ad. Typical measurement units are the same for LUMINOUS EMITTANCE ie. lumen/cm<sup>2</sup> = one phot, lumen/m<sup>2</sup> = one lux, and lumen/ft<sup>2</sup> = one ft candle.



#### Luminous intensity (Symbol I)

A spatial flux density concept. It is the ratio of luminous flux of a source to the solid angle subtended by the detected area and that source. The LUMINOUS INTENSITY of a source assumes that source to be point rather than an area dimension. The LUMINOUS INTENSITY (or CANDLE POWER) of a source is measured in LUMENS/STERADIAN which is equal to one CANDELE (or loosely, one CANDLA).




#### Luminance (Symbol B)

Sometimes called photometric brightness (although the term brightness should not be used alone as it encompasses other physiological factors such as colour, sparkle, texture, etc.) it is applied to sources of appreci-able area size. Mathematically, if the area of an emitter (circular for example) has a diameter or diagonal dimension greater than 0.1 the distance to the detector, it can be considered as an area source. If less than this 10% figure, the source can be treated as point in nature. This one to ten ratio of source diameter to distance is offered as it MATHEMATICALLY very closely approximates results obtained when comparing an area source to its point equivalent. LUMINANCE presents itself as an extremely useful parameter as it applies a figure of merit to:

- l. Apparent or protected area of the source (Ap).
- 2. Amount of luminous flux contained within the projected area of the source (Ap).
- 3. Solid angle the projected area generates with respect to the centre of the source.
- **Note:** The projected area Ap varies directly as the cosine of i.e. max. at 0° or normal to the surface and minimum at 90°

#### Ap = Ae cos

LUMINANCE is defined as the ratio of LUMINOUS INTENSITY to the projected area of the source Ap.

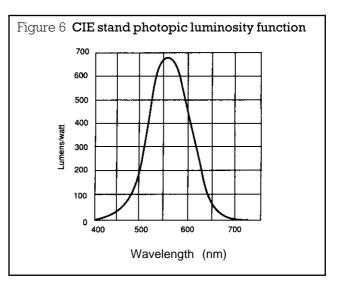


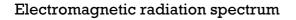
|                    | LUMENS        |                 |
|--------------------|---------------|-----------------|
| LUMINOUS INTENSITY | = STERADIAN = | <u>CANDELAS</u> |
| Ар                 | Ae cos        | (Sq. Unit)      |

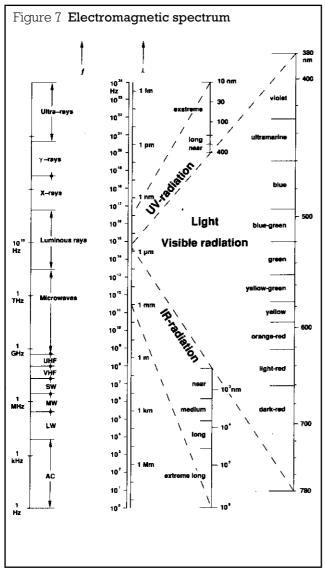
And depending on the units used for area:

| l CANDELA/cm <sup>2</sup> | = 1 STILB                    |
|---------------------------|------------------------------|
| l CANDELA/m <sup>2</sup>  | = 1  NIT                     |
| l CANDELA/in <sup>2</sup> | = } no designator available. |
| 1 CANDELA/ft²             |                              |

Also:


| 1/ | candela/cm <sup>2</sup> | = LAMBERT                 |
|----|-------------------------|---------------------------|
| 1/ | candela/m²              | = APOSTILB (or BLONDEL)   |
| 1/ | candela/in²             | = no designator available |
| 1/ | candela/ft²             | = FOOT LAMBERT            |


#### CIE curve


Photometric quantities are related to the corresponding radiometric quantities by the CIE Standard Luminosity Function which is often called the 'standard eyeball'.

The eye responds to the rate at which radiant energy falls on the retina, ie., on the radiant flux density expressed as Watts/m<sup>2</sup>. The corresponding photometric quantity is Lumens/m<sup>2</sup>. The standard luminosity function is then, a plot of Lumens/Watt as a function of wavelength.

The function has a maximum value of 680 Lumens/Watt at 555nm and the 1/2 power points occur at 510 nm and 610 nm (Figure 6).

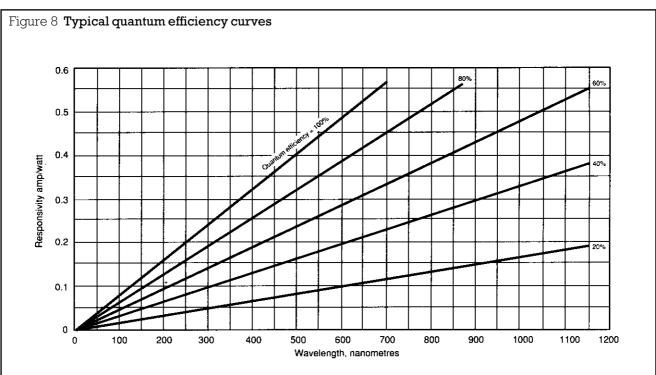


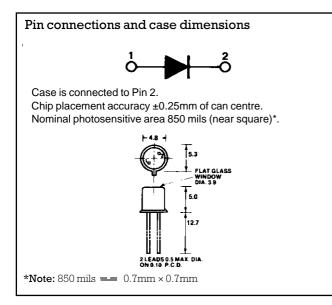




The following range of discrete opto devices is described, each of which may be used in a variety of sensing applications.

| 5 11                                  |              |
|---------------------------------------|--------------|
| Product                               | RS stock no. |
| General purpose photodiode            | 305-462      |
| BPX 65 high speed photodiode          | 304-346      |
| BPW21 photodiode                      | 303-719      |
| Quadrant silicon photodiode           | 652-027      |
| 15mm <sup>2</sup> silicon photodiode  | 194-076      |
| Medium area photodiode                | 651-995      |
| Large area photodiode                 | 303-674      |
| Integral amplifier 5mm <sup>2</sup>   | 308-067      |
| Integral amplifier 100mm <sup>2</sup> | 590-963      |
| 5.8mm <sup>2</sup> UV photodiode      | 564-021      |
| 33.6mm² UV photodiode                 | 564-037      |
| 16 element linear array               | 194-060      |
| •                                     |              |

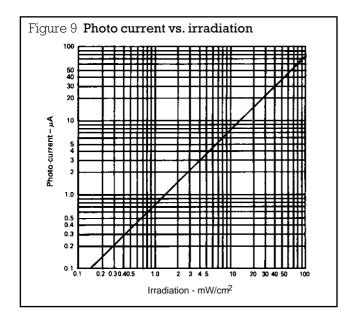

## General purpose photodiode (**RS** stock no. 305-462)

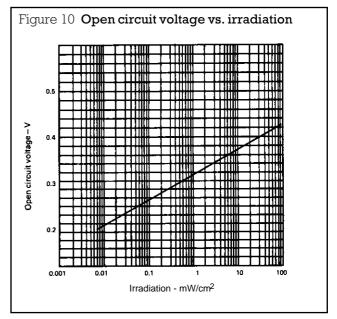

A planar diffused photodiode in a 2-lead TO-18 can with glass window. A very linear output of current versus light level can be obtained over a wide range of inputs. Light falling on the diode induces current in the diode, thus when the device is reversed biased thereby conducting very low leakage currents, it behaves as a current source controlled by the incident illumination.

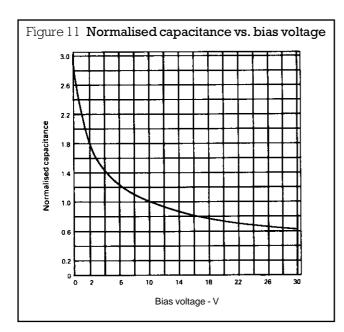
## Absolute maximum ratings

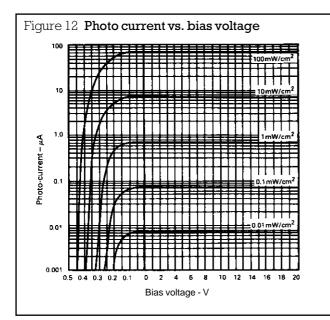
at +25°C (unless stated)

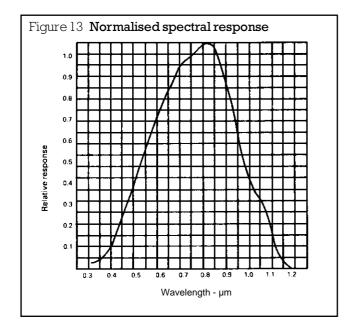
| Reverse voltage $V_R$       | +80V           |
|-----------------------------|----------------|
| Forward current 🖡           | 100mA          |
| Operating temperature range | 0°C to +70°C   |
| Storage temperature range   | 55°C to +125°C |
| Power dissipation Pd        | 200mW          |





#### Electrical characteristics (at +22°C ±2°C unless otherwise stated)


| Symbol            | Parameter                    | Min. | Тур. | Max. | Units                 | Test conditions         |
|-------------------|------------------------------|------|------|------|-----------------------|-------------------------|
| V <sub>(BR)</sub> | Breakdown voltage            | 80   |      |      | V                     | Dark; rev. current 10µA |
| I <sub>D</sub>    | Dark current                 |      | 1.4  | 14   | nA                    | Dark; rev. bias 20V     |
| R <sub>e</sub>    | Responsivity                 | 0.35 | 0.7  | 1.4  | µA/mW/cm <sup>2</sup> | Zero bias; 400µW/cm²    |
| С                 | Capacitance                  |      | 12   |      | pF                    | Dark; rev. bias 10V     |
| t <sub>R</sub>    | Response time                |      | 4    |      | ns                    | 10-90% levels           |
| -                 | Temp. coeff. of responsivity |      | 0.35 |      | % per °C              | 0°C to +70°C            |
| -                 | Temp. coeff. of dark current |      | ×2   |      | per 10°C rise         | 0°C to +70°C            |


## Typical performance curves

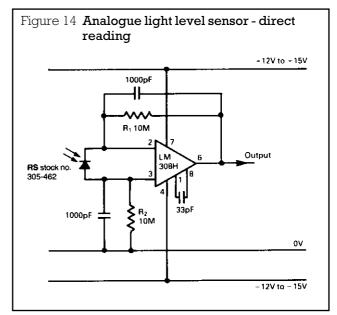










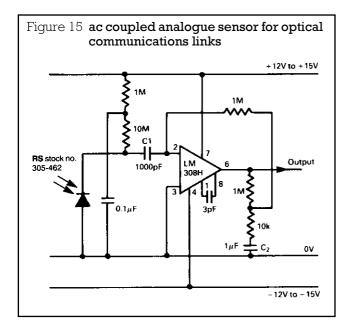

## Typical applications

#### Analogue light level sensor - direct reading

Low input bias current op amps such as LM 308 or FET input types can be used to give steady dc indication of light levels as is necessary for photometric applications, photocell measurements, transmission and reflection coefficients, etc.

The values shown give approximately 14V/mW/cm<sup>2</sup> of irradiation. The value of R1 and R2 may be reduced for less sensitivity but should be kept equal. For values less than 100k , a less sophisticated amplifier may be used, eg.  $\mu$ A741.

The 1000pF capacitors may be increased to reduce ripple from ac lighting or control response time accordingly.

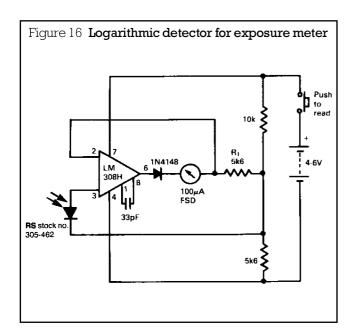



# ac coupled analogue sensor for optical communications links $% \left( {{{\bf{n}}_{\rm{s}}}} \right)$

A stage of amplification giving the substantial gain necessary for optical communication links is implemented as shown. An op amp with low input bias currents such as LM308 or an FET input type is necessary.

The input ac coupling C1 gives a dc isolation of steady ambient conditions, and C2 minimises effects of offset voltages, both such lower break frequencies are below 10Hz.

Upper frequency response is approximately 3kHz and ac sensitivity is 70V/mW/cm<sup>2</sup>. A further amplifier/buffer stage is necessary to drive a headset or loudspeaker.



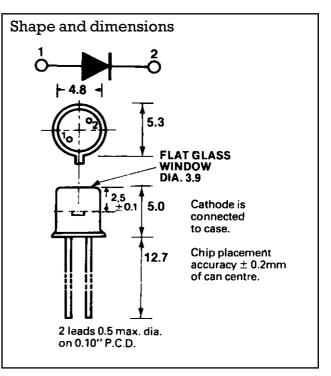

#### Logarithmic detector for exposure meter

Feeding the RS stock no. 305-462 into a high impedance gives a logarithmic voltage/illumination response.

The circuit shown is the basis for a simple batteryoperated exposure meter. At very low light levels where the amplifier bias current may cause the output to go negative, a diode avoids the spurious state of negative indication.

The movement may be calibrated in photographic scales, one stop being approximately 7µA. Sensitivity can be trimmed by adjusting R1.



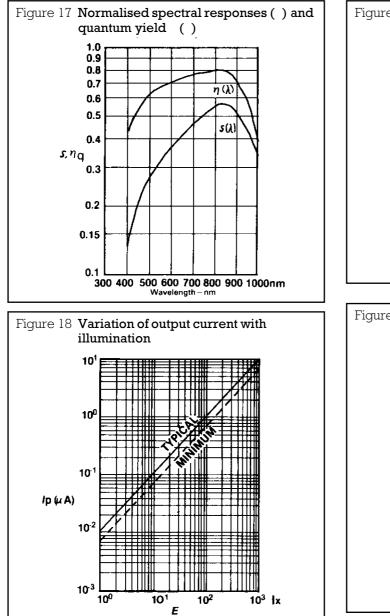

#### BPX 65 high speed photodiode (**RS** stock no. 304-346)

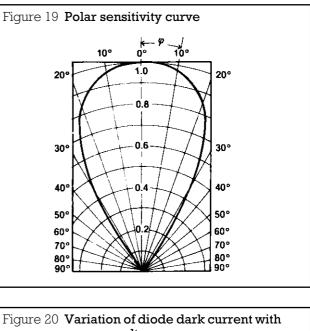
The BPX 65 is a planar silicon PIN photodiode housed in a modified TO-18 case incorporating a plain glass flat window which has no influence on the beam path of optical lens systems. The cathode is electrically connected to the case. Because the BPX 65 is capable of detecting wide bandwidth signals due to its excellent high frequency response, this coupled with its high sensitivity makes the device ideal for signal detection applications. This photodiode is outstanding for low junction capacitance and short switching times.

#### Absolute maximum ratings

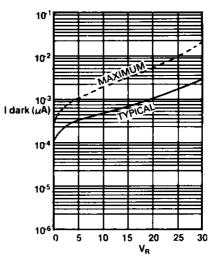
| at +25°C (unless stated)       |                            |
|--------------------------------|----------------------------|
| Reverse voltage V <sub>R</sub> | _50V                       |
| Forward current                | 10mA (200mA pulsed 1µs     |
| -                              | 1% duty cycle)             |
| Operating temperature rang     | ge25°C to +70°C            |
| Storage temperature range_     | 55°C to +125°C             |
| Junction temp. T               | +125°C                     |
| Power dissipation Pd           | 250mW                      |
| (derate linearly 2.5m)         | $W/^{\circ}C$ above +25°C) |

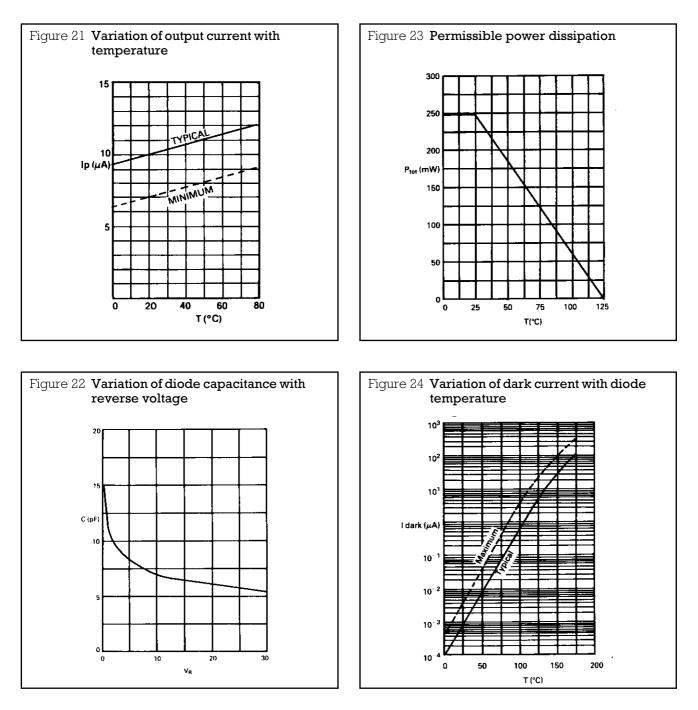
(derate linearly 2.5mW/°C above +25°C)





|                 | Parameter                      | Test conditions                    | min. | typ.                  | max. | units |
|-----------------|--------------------------------|------------------------------------|------|-----------------------|------|-------|
| A               | Radiant sensitive area         |                                    |      | 1                     |      | mm²   |
| s max.          | Wavelength of max. sensitivity |                                    |      | 850                   |      | nm    |
| R <sub>e</sub>  | Responsivity                   | =450nm                             |      | 0.2                   |      | A/W   |
|                 |                                | =900nm                             |      | 0.55                  |      | A/W   |
|                 |                                | =1064nm                            |      | 0.15                  |      | A/W   |
| t <sub>r</sub>  | Response time (10-90% levels)  | $R_{L}$ =50 ; $V_{R}$ =20V; =900nm |      | 0.5                   | 1    | ns    |
| C <sub>0</sub>  | Capacitance V <sub>R</sub> =0V |                                    |      | 15                    |      | pF    |
| C <sub>1</sub>  | V <sub>R</sub> =1V             |                                    |      | 12                    |      | pF    |
| C <sub>20</sub> | V <sub>R</sub> =20V            |                                    |      | 3.5                   |      | pF    |
| fg              | Cut-off frequency              |                                    |      | 500                   |      | MHz   |
| lp              | Dark current                   | V <sub>R</sub> =20V, Dark (E=0)    |      | 1                     | 5    | nA    |
| S               | Spectral sensitivity           | V <sub>R</sub> =20V; see Note 1    | 7    | 10                    |      | nA/Lx |
| NEP             | Noise equivalent power         | V <sub>R</sub> =20V                |      | 3.6×10 <sup>-14</sup> |      | W/ Hz |

Electrical characteristics at +25°C (unless stated)


Note1. The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a colour temperature of 2856K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).


## Typical performance curves





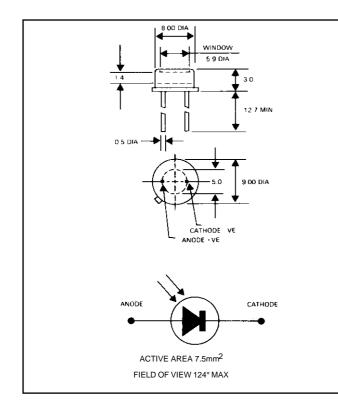
reverse voltage

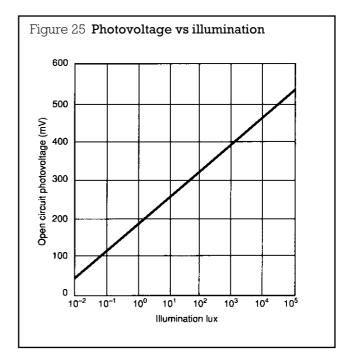




# BPW21 photodiode

## (**RS** stock no. 303-719)


A silicon photodiode housed in an hermetically sealed case with a flat window incorporating built-in colour correction. Sensitivity approximating the human eye response. Linear current (short circuit) versus illumination. Log. voltage versus illumination. This photodiode is designed for use in the photoamperic mode and is ideally suited for use in light monitoring and control, optical instrumentation and camera control.

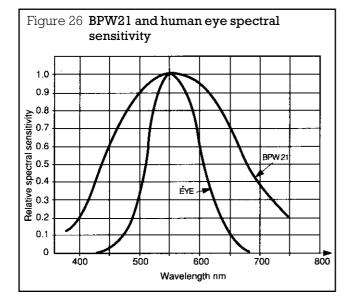

#### Absolute maximum ratings

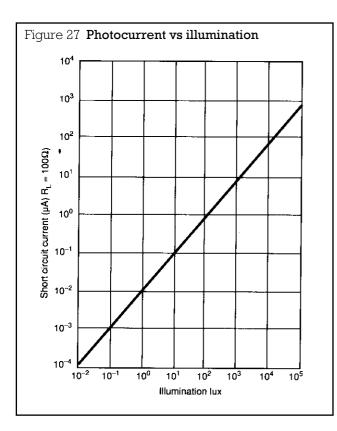
| Ambient temperature range       | 25°C to +100°C      |
|---------------------------------|---------------------|
| Reverse voltage, V <sub>R</sub> | 10V                 |
| Open circuit voltage            | 650mV               |
| Power dissipation (at 25°C), Pd | 250mW               |
| Illuminance, E                  | 10 <sup>5</sup> lux |

#### Features

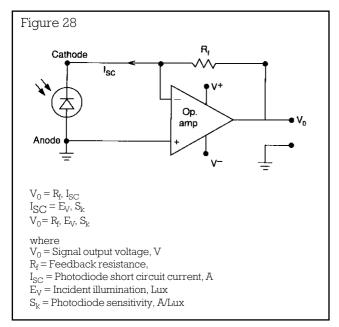
- Response approximating to the human eye
- Photovoltaic cell operation
- Linear output current versus illumination
- Hermetically sealed TO5 case.







(For standard illuminant A, 1000 Lux = 4.75mW/cm<sup>2</sup>)

#### Electrical characteristics at 25°C


|                                | Parameter                             | Conditions                                   | Min. | Тур.                   | Max. | Unit    |
|--------------------------------|---------------------------------------|----------------------------------------------|------|------------------------|------|---------|
| Sk                             | Sensitivity (short circuit)           | $R_{\rm L} = 100$ . $E_{\rm A} = 10^{-2}$ to |      |                        |      |         |
|                                |                                       | 10⁵ lux*                                     | 4.5  | 7                      |      | nA/Lux  |
| $V_{\rm ph}$                   | Photovoltage (open circuit)           | $E_A = 1 Lux*$                               |      | 250                    | 350  | mV      |
| T <sub>k</sub> I <sub>SC</sub> | Temp. Coeff. of short circuit current | $E_A = 1KLux*$                               |      | -0.05                  |      | %/°C    |
| $T_k V_{ph}$                   | Temp. Coeff. of open circuit voltage  | $R_L = 100$ . $E_A = 1K Lux*$                |      | -2                     |      | mV/°C   |
| р                              | Peak wavelength sensitivity           |                                              |      | 560                    |      | nm      |
|                                | Spectral bandwidth                    | 50% sensitivity upper limit                  |      | 680                    |      | nm      |
|                                |                                       | 50% sensitivity lower limit                  |      | 440                    |      | nm      |
|                                | Junction capacitance                  | $V_R = 0V$                                   |      | 490                    |      | pF      |
| t <sub>r</sub>                 | Rise time                             | $R_L = 1K$ . $V_R = 5V$                      |      | 1.0                    |      | μs      |
| $I_{D}$                        | Dark current                          | $R_L = 1K$ . $V_R = 5V$                      |      | 2                      | 30   | nA      |
| NEP                            | Noise equivalent power                | $V_R = 5V$                                   |      | 1.4 × 10 <sup>-5</sup> |      | Lux/ Hz |

\*The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a colour temperature of 2856°K (standard Light A in accordance with DIN 5033 and IEC publ. 306-1).





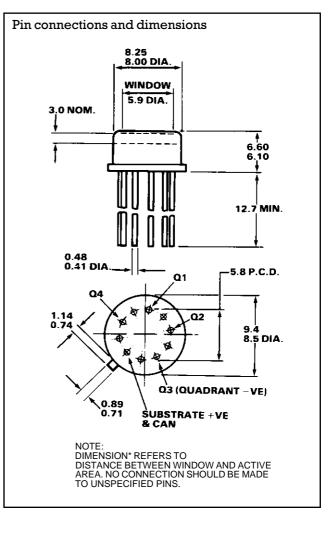
## Typical photovoltaic connection



# Quadrant silicon photodiode (**RS** stock no. 652-027)

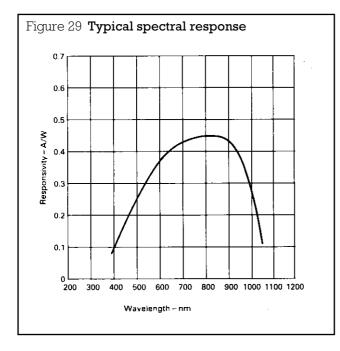
A silicon photodiode containing four separate sensing elements (with commoned cathodes) arranged one per quadrant. The output voltage of each quadrant is available separately enabling null conditions to be detected with equal degrees of shading. The device is hermetically sealed in a TO5 package which incorporates the pcb pin connections.

#### Absolute maximum ratings


| dc reverse voltage                   | 15V            |
|--------------------------------------|----------------|
| Peak pulse current (1µs, 1% duty cyc | le)200mA       |
| Peak dc current                      | 10mA           |
| Storage temperature range            | 45°C to +100°C |
| Operating temperature range          | 25°C to +75°C  |
| Lead temperature soldering (5s)      | +200°C         |

## Features

- High blue sensitivity and shunt resistance
- Suitable for low light level applications
- T05 package incorporating pcb pin connections.


#### **Applications**

- High accuracy position sensing
- Alignment
- Optical surveying.



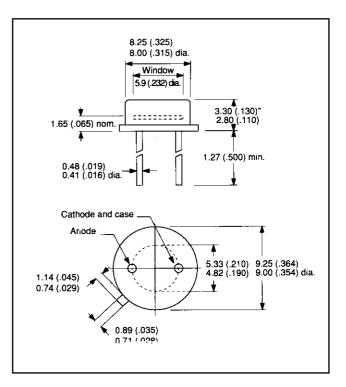
## Specification

| Parameter                | Conditions                                   | Min. | Тур.                  | Max. | Unit            |
|--------------------------|----------------------------------------------|------|-----------------------|------|-----------------|
| Operating voltage        |                                              |      |                       | 12   | V               |
| Dark current             | $V_R = 1V$                                   |      | 0.03                  | 3    | nA              |
| Capacitance              | $V_R = 0V$                                   |      | 80                    | 100  | pF              |
| Responsivity             | 900nm, V <sub>R</sub> = 1V                   | 0.42 | 0.45                  |      | A/W             |
| Rise time                | 0-70%, 864nm, V <sub>R</sub> = 10V, 100 load |      |                       | <15  | ns              |
| Peak wavelength          |                                              |      | 820                   |      | nm              |
| Spectral response range  |                                              | 430  |                       | 900  | nm              |
| Noise equivalent power   | 900nm                                        |      | 1 × 10 <sup>-13</sup> |      | $WH^{-1/2}$     |
| Active diameter          |                                              |      | 3                     |      | mm              |
| Total active area        |                                              |      | 7                     |      | mm <sup>2</sup> |
| Metallurgical separation |                                              |      | 200                   |      | μm              |



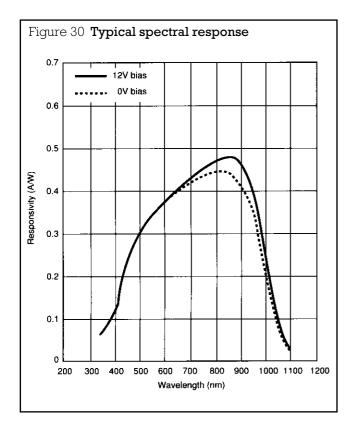
## Electrical/Optical specifications

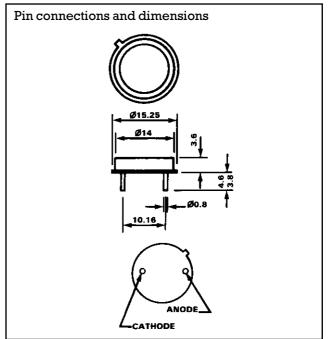
Characteristics measured at 22°C ( $\pm$ 2) ambient, and a reverse bias of 12 volts, unless otherwise stated. Shunt resistance measured at  $\pm$  10mV.


## Absolute maximum ratings

|                                            | Max. rating     |
|--------------------------------------------|-----------------|
| dc reverse voltage                         | 15V             |
| Peak pulse current<br>(1µs, 1% duty cycle) | 200mA           |
| Peak dc current                            | 10mA            |
| Storage temperature range                  | -45°C to +100°C |
| Operating temperature range                | -25°C to +75°C  |
| Soldering temperature for 5 seconds max.   | 200°C           |

## 15mm<sup>2</sup> silicon photodiode (**RS** stock no. 194-076)


A 15mm<sup>2</sup> silicon photodiode housed in an hermetically sealed TO5 package. This device is ideal for low light level applications where a very high signal to noise ratio is important such as light monitoring and control applications.


It may be operated photovoltaically or with a reverse bias of up to 12V where lower capacitance is needed.



## Single elements

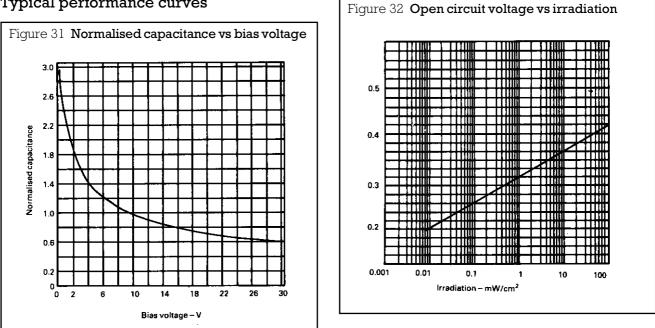
| Active area                                                                                                         | 15mm <sup>2</sup> 3.8 × |       |                     | 3.8mm     |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------|-------|---------------------|-----------|--|
| Responsivity A/W<br>= 436nm                                                                                         | <b>Min.</b><br>0.18     |       | <b>yp.</b><br>.21   | Max.      |  |
| Dark current                                                                                                        |                         | 3:    | nA                  | 10nA      |  |
| NEP WHz = 436nm<br>Vr = 0V                                                                                          |                         | 8.8 : | × 10 <sup>-14</sup> |           |  |
| $\begin{array}{ll} \mbox{Capacitance } pF & \mbox{Vr} = 0V \\ \mbox{Capacitance } pF & \mbox{Vr} = 12V \end{array}$ |                         |       |                     | 390<br>80 |  |
| Shunt resistance megaohm                                                                                            | 25                      | 2     | 00                  |           |  |
| $\begin{array}{ll} \text{Risetime ns} &= 820 \text{nm} \\ \text{R}_{\text{L}} = 50 \end{array}$                     |                         | ]     | 12                  |           |  |

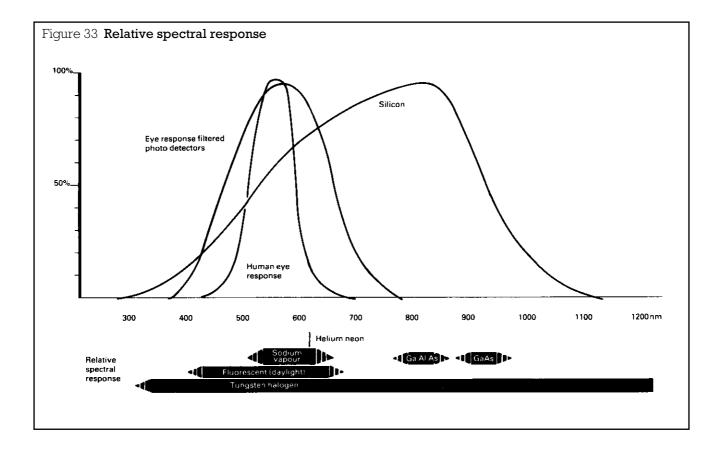




## Medium area photodiode (RS stock no. 651-995)

The **RS** stock no. 651-995 is a high speed, medium area, silicon photodiode mounted in an hermetically sealed TO5 package. The device is ideal for reduced light applications including brightness control, edge detectors, colour grading etc.


#### Absolute maximum ratings


| Reverse voltage                 | _60V           |
|---------------------------------|----------------|
| Operating temperature range     | 40°C to +70°C  |
| Storage temperature range       | 55°C to +125°C |
| Lead temperature soldering (5s) | +200°C         |

#### Electrical characteristics at +22°C ±2°C unless otherwise stated

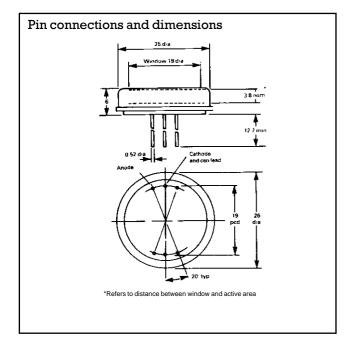
| Parameter                               | Conditions                  | Min. | Тур. | Max. | Unit            |
|-----------------------------------------|-----------------------------|------|------|------|-----------------|
| Radiant sensitive area                  |                             |      | 41.3 |      | mm <sup>2</sup> |
| Wavelength of maximum sensitivity       |                             | 760  | 800  | 880  | nm              |
| Peak responsivity                       | 800 nm                      | 0.4  | 0.5  |      | A/W             |
| Dark current                            | $V_R = 1V$                  |      | 4.0  | 20   | nA              |
|                                         | $V_R = 20V$                 |      | 40   | 200  | nA              |
| Capacitance                             | $V_R = 0V$                  |      | 325  | 400  | pF              |
|                                         | $V_R = 10V$                 |      | 91.5 | 113  | pF              |
|                                         | $V_R = 20V$                 |      | 71   | 87.5 | pF              |
| Response time                           | $V_{R} = 10V, R_{L} = 100R$ |      | 25   | 40   | ns              |
| Temperature coefficient of responsivity | (0°C to +70°C)              |      | 0.35 |      | %/°C            |
| Temperature coefficient of dark current | (0°C to +70°C)              |      | ×2   |      | per +10°C       |

## Typical performance curves





## Large area photodiode


## (**RS** stock no. 303-674)

A high speed, large area, silicon photovoltaic detector housed in a 26.2mm diameter case. Its large active area,  $1 \text{ cm}^2$ , and peak spectral response at 900nm make the device suitable for use as a calibration device in optical instrumentation, and for other optical measurements. Spectral response range (5% points): 350 to 1150nm.

## Absolute maximum ratings

at +25°C (unless stated)

| Reverse voltage V <sub>R</sub> |           | 50V                    |
|--------------------------------|-----------|------------------------|
| Operating temperature          | e range _ | 55°C to +70°C          |
| Forward current $I_{\rm F}$    | _Limited  | by Pd and bias voltage |
| Power dissipation Pd_          |           | 100mW                  |



## Electrical characteristics at +25°C (unless stated)

|                   | Parameter           |           | Test conditions          |           | Min. | Тур. | Max. | Unit     |
|-------------------|---------------------|-----------|--------------------------|-----------|------|------|------|----------|
| V <sub>(BR)</sub> | Breakdown voltage   |           | $I_D = 100 \mu A$        | 50        |      |      | V    |          |
| I <sub>D</sub>    | Dark current        |           | Dark, rev. bias 10       | V         |      | 0.5  | 1.5  | μA       |
| R <sub>e</sub>    | Responsivity @ 450r | nm        |                          |           |      | 0.2  | 0.22 |          |
|                   | 633r                | ım        |                          |           |      | 0.35 | 0.4  | A/W      |
|                   | 900r                | nm        |                          |           |      | 0.5  | 0.55 |          |
|                   | 1064                | 4nm       |                          |           |      | 0.15 | 0.16 |          |
| С                 | Capacitance         |           | at 0V                    |           |      | 1500 |      | pF       |
|                   |                     |           | at 10V rev. bias.        |           |      | 350  |      | Ť        |
|                   |                     |           | at 0V $R_L$ 50           |           |      | 0.5  |      | μs       |
| tI                | Response time (10%  | % to 90%) | at 10V $R_{\rm L}50$ , < | 910nm     |      | 50   |      | ns       |
| R <sub>s</sub>    | Shunt resistance    |           | at 0V ±0.1V              |           |      | 5    |      | М        |
|                   |                     |           | at 0V                    | f = 1 kHz |      | 0.1  |      | pA (rms) |
| In                | Noise current       |           | at 10V rev. bias         | f = 1kHz  |      | 0.4  |      | Hz       |
|                   | Noise equiv.        | 450nm     | at 0V                    |           |      | 0.5  |      | pW       |
|                   | ÷                   |           | at 10V rev. bias         |           |      | 2    |      | Hz       |
| NEP               | power               | 900nm     | at 0V                    |           |      | 0.2  |      | pW       |
|                   | (at f = 1kHz)       |           | at 10V rev. bias         |           |      | 0.8  |      | Hz       |

## Features

- Photovoltaic operation or low-bias photoconductive operation
- High sensitivity over wide spectral range
- Circular active area (1cm<sup>2</sup>)
- Low noise
- Fast response
- Long term stability
- Low capacitance for a photovoltaic detector.

## Applications

- $\blacktriangle$  Optical instrumentation
- $\blacktriangle$  Laser detection
- $\blacktriangle$  Optical communication.

### Typical performance curves



#### 5mm<sup>2</sup> photodiode with amplifier

#### (**RS** stock no. 308-067)

The **RS** stock no. 308-067 consists of a high performance silicon photodiode combined with a high gain low noise amplifier in a TO5 package. It is designed particularly for use where accurate measurements are needed of low light levels, and medium speed variation in such light levels. Its small size and excellent temperature coefficients make it ideally suited for use under adverse conditions.

Any supply voltage between  $\pm 2.5V$  and  $\pm 18V$  may be used. A single output line gives a voltage with respect to earth (Pin 1) proportional to the input light level, up to a maximum only slightly less than the power rail. Correction for dark level output is not normally required due to its extremely low value. The output may be short circuit to ground or either power rail without risk of damage. Changes in ambient temperature also cause only minimal variation in signal level, typically  $150\mu$ V/°C.

## Absolute maximum ratings

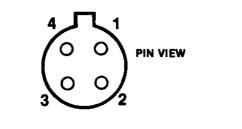
| Supply voltage                | <u>±18V</u>    |
|-------------------------------|----------------|
| Output short circuit duration | Indefinite     |
| Storage temperature           | 65°C to +100°C |
| Operating temperature         | 0°C to +70°C   |

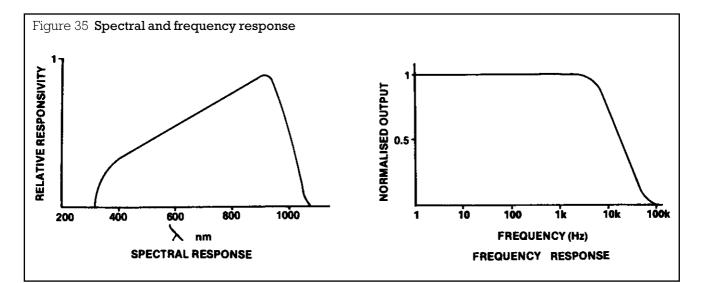
#### **Connecting details**

- l. Earth
- 2. Output
- 3. V+ <sup>-</sup>
- 4. V- (Connected to can)

TO5 can with 4 leads Gold-plated leads: Active light sensitive area:

12.7mm length 5mm²


#### Features


- Very high responsivity
- Linear response
- Low output impedance
- Low noise
- Rugged construction
- Excellent temperature characteristics
- Short circuit proof
- Excellent power supply noise rejection
- TTL compatible
- Simple to use

#### **Applications include**

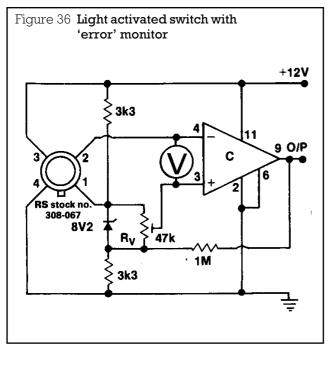
- Light intensity measurements
- Light fluctuation detection
- Optical spectroscopy
- Pollution monitoring
- Alarm systems
- Optical shaft encoders
- Automated inspection and control
- Flow monitoring.

# CONNECTION DETAILS





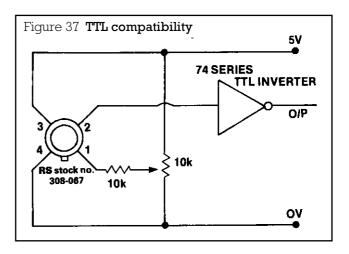
**Electrical specification** All at VS  $\pm$  15V and 25°C unless otherwise stated


| Parameter                          | Conditions               | Min. | Тур. | Max. | Units                              |
|------------------------------------|--------------------------|------|------|------|------------------------------------|
| O/P dark level                     |                          |      | +20  | +60  | mV                                 |
| O/P saturation level               | R <sub>L</sub> 2k        | -9   | -12  |      | V                                  |
| O/P resistance <sup>1</sup>        |                          |      | 75   |      |                                    |
| O/P short circuit current          |                          |      | 6    |      | mA                                 |
| O/P noise voltage                  | $V_{O} = 1V$             |      | 1    | 3    | mV/rms                             |
| Responsivity                       | 430nm                    | 30   |      |      |                                    |
|                                    | 630nm                    | 160  |      |      | mV/µW <sup>1</sup> cm <sup>2</sup> |
|                                    | 900nm                    | 250  |      |      |                                    |
| Supply voltage (V+)                |                          | 2.5  | 15   | 18   | V                                  |
| Supply voltage (V-)                |                          | -2.5 | -15  | -18  | V                                  |
| Supply current                     | $R_L =$                  |      | 0.5  | 1.3  | mA                                 |
| Supply voltage rejection ratio     |                          | 150  | 50   |      | μV/V                               |
| Bandwidth                          | Upper 3dB point          | 3    | 5    |      | kHz                                |
| Rise time <sup>2</sup>             | $C_{L} = 0$              |      | 30   | 50   | μs                                 |
| Fall time <sup>2</sup>             | $C_{\rm L} = 0$          |      | 30   | 50   | μs                                 |
| Dark level temperature coefficient | 20°C T <sub>A</sub> 50°C |      | 150  | 500  | μV/°C                              |

#### Notes:

1. At 5kHz. Drops to 0.01 at dc.

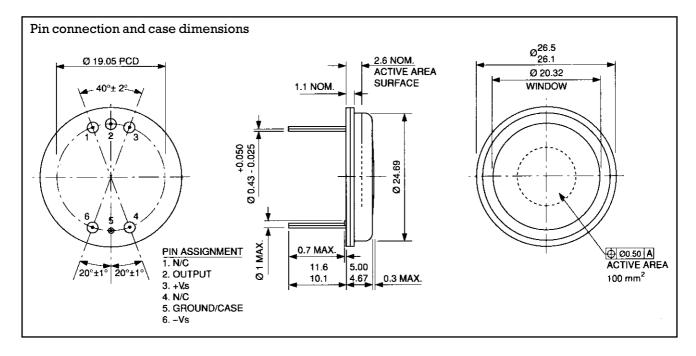
2. Time for output signal to reach 90% of true reading after application of a step change in light intensity.


## **Application examples**



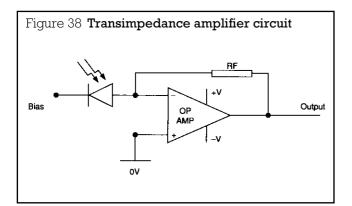
#### Linear interfacing

In Figure 36, the comparator (eg. **RS** stock no. 308-843) will switch its output state when the light intensity increases above a pre-set level, determined by  $R_V$ . The centre zero voltmeter registers the difference between the switching threshold intensity and the actual intensity received by the **RS** stock no. 308-067. Since the threshold is determined with respect to pin 1 of the **RS** stock no. 308-067 supply voltage variations have no effect on the operation of the circuit.


Note: Centre zero voltmeter (**RS** stock no. 196-8418) requires a series resistor (**RS** stock no. 167-967).



# Large area photodiode + amp


#### (RS stock no. 590-963)

This silicon photodiode has an active area of 100mm<sup>2</sup> and an integral transimpedance amplifier. This device is ideal for use in electrically noisy environments because the length of the highly sensitive input line to the amplifier is very short and is also screened by the metal can package.





The transimpedance configuration provides high noise immunity and high amplifier signal saturation levels.



In this circuit the op amp is used with negative feedback so that the current generated by the photodiode is converted via the resistor into an output voltage.

Gain is defined only in terms of the feedback resistor.

## UV enhanced photodiodes (RS stock nos. 564-021 and 564-037)

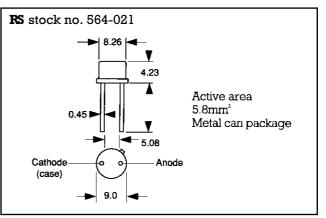
Ultra-violet sensitive silicon photodiodes with enhanced responsivity in the 190 to 400nm range. The devices high shunt resistance and enhanced responsivity make them ideal for light measurement photometry and fluorescence applications.

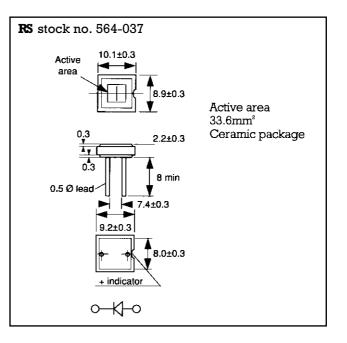
The 5.8mm<sup>2</sup> is housed in a metal can package while the 33.6mm<sup>2</sup> device is housed in ceramic packages. All packages incorporate a quartz window for enhanced spectral response.

## **Electrical characteristics**

 $(Ta = 25^{\circ}C, \pm 15V \text{ supply})$ 

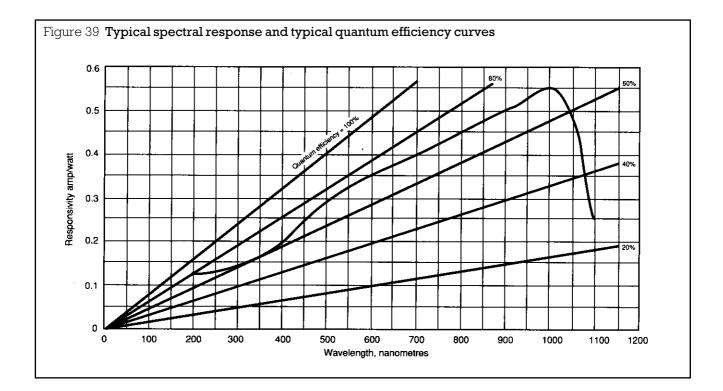
| Parameter                  | Min.                  | Тур. | Max. | Units |
|----------------------------|-----------------------|------|------|-------|
| Operating wavelength       | 400                   | -    | 950  | nm    |
| Peak wavelength            | -                     | 800  | -    | nm    |
| Responsivity @ 530nm       | 1.3 × 10 <sup>5</sup> | -    | -    | V/W   |
| Supply voltage             | ±5                    | -    | ±18  | V     |
| Supply current             | -                     | -    | 250  | μA    |
| Transimpedance gain        | -                     | 500k | -    | -     |
| Output resistance          | -                     | 1    | -    |       |
| Dark output offset voltage | -                     | -    | ±5   | mV    |
| Rise time                  | 77                    | -    | -    | μs    |
| Bandwidth                  | -                     | 5    | -    | kHz   |
| Dark output noise level    | -                     | -    | 400  | µVrms |
| Temperature range          | 0°                    | -    | +70  | °C    |


Solder temperature 300°C for 15 seconds.


To eliminate unwanted oscillation it is recommended that a 10nF or 100nF disc ceramic capacitor in parallel with a  $1\mu$ F tantalum decoupling capacitor be used between supply and 0V close to the device.

### **Absolute maximum ratings** ( $Ta = 25^{\circ}C$ )

| Reverse voltage                   | 5V             |
|-----------------------------------|----------------|
| Peak current (1µs, 1% duty cycle) | 200mA          |
| Peak dc current                   | 10mA           |
| Storage temperature range         | 55°C to +125°C |
| Operating temperature range       | 55°C to +70°C  |
| Soldering temperature             | 260°C          |
|                                   |                |

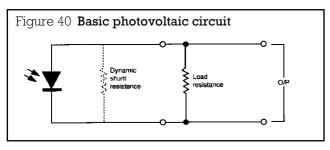

#### Pin connections and case dimensions





## **Electrical characteristics** ( $Ta = 25^{\circ}C$ )

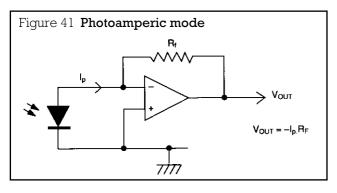
| -    | rtive<br>rea     | Responsivity<br>a/w (typical) |         | Peak<br>Responsivity | Dark current<br>@Vr =<br>10mV | Noise equivalent<br>power (typ.) | Capaci-<br>tance                         | Rise time<br>$V_L = 0$<br>$R_L = 1k$ |         | resistance<br>= ± 10mV |         |
|------|------------------|-------------------------------|---------|----------------------|-------------------------------|----------------------------------|------------------------------------------|--------------------------------------|---------|------------------------|---------|
| mm²  | mm               | @ 190nm                       | @ 245nm | @ 340nm              | (typical)                     | (typical)                        | @900nm                                   | typical                              | typical | min.                   | typical |
| 5.8  | $2.4 \times 2.4$ | 0.12                          | 0.14    | 0.19                 | 950nm                         | ЗрА                              | $6 \times 10^{-15} \text{ w/Hz}^{1/2}$   | 170pF                                | 0.4µs   | 0.5G                   | 3G      |
| 33.6 | 5.8 × 5.8        | 0.12                          | 0.14    | 0.19                 | 950nm                         | 20pA                             | $1.5 \times 10^{-14} \text{ w/Hz}^{1/2}$ | 1000pF                               | 2.0µs   | 0.5G                   | 0.5G    |




## **Typical applications**

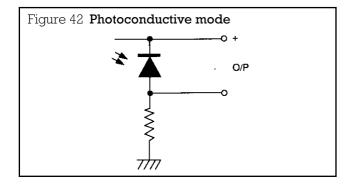
#### Photovoltaic mode

In the photovoltaic mode, as the light level increases, photocurrent induced in the device develops a voltage across the dynamic shunt resistance. However, this resistance then decreases exponentially, therefore the photogenerated voltage is a logarithmic function of the incident light intensity.


Typically this mode of operation is most useful in simple comparator applications, Figure 40 shows the basic photovoltaic circuit.

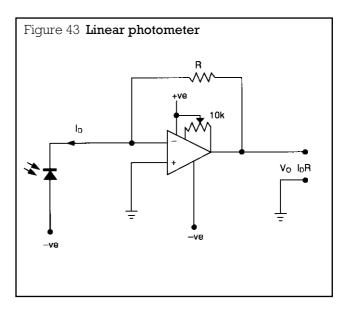


#### Photoamperic mode


If the photodiode is connected to a low value of load resistance the effect on the dynamic resistance is negligible and the output current is linearly related to light level.

The usual method of providing a low load resistance with subsequent amplification is to connect the diode to the virtual earth of an operational amplifier. This circuit as shown in Figure 41 is a current to voltage converter.




#### Photoconductive mode

The dynamic resistance of a reverse biased photodiode is constant, and a high value of load resistance can be used to give a voltage output that is linearly related to the light level incident on the device. Because the diode junction capacitance decreases with increasing reverse bias voltage, diodes operated in this mode will have the fastest response times. However, noise levels will also increase in this mode as leakage current increases with bias voltage. Figure 42 shows the basic circuit.



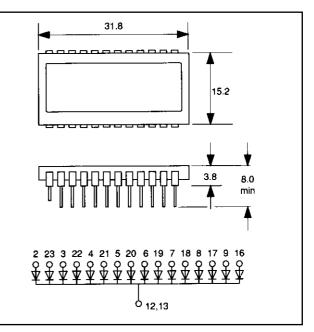
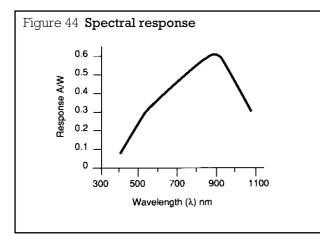
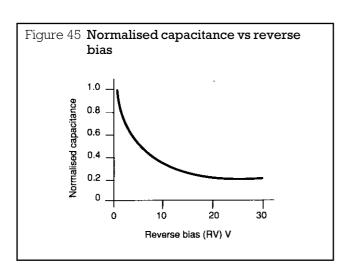
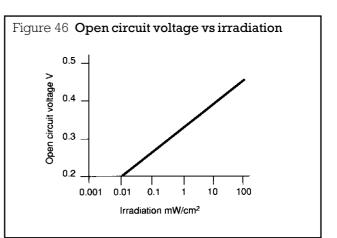

#### Linear photometer

Figure 43 illustrates a photometer circuit using an FET operational amplifier. Diode current  $I_{\rm D}$  varies with light level from 1nA to 1mA type. Resistor R is chosen to give required output-typ. value 1M $_{\rm -}$ .





#### 16 element linear array (**RS** stock no. 194-060)


A 16-element linear silicon PIN photodiode array housed in an hermetically sealed 24 pin ceramic d.i.l. package. This high speed device consists of 16 individual elements arranged on a 1mm pitch in common cathode configuration. This array is ideal for linear position sensing, wide aperture detection and edge and hole detection in strip materials.



| Package<br>type | Peak<br>responsivity<br>per diode<br>A/W at<br>nm | Number<br>of<br>diodes | Pitch<br>of diodes<br>mm | Active area<br>of each diode<br>mm² | Dark current<br>per diode<br>nA<br>(VR = 1V) | Capacitance<br>per diode<br>pF<br>(VR = 0V) | Response time<br>per diode<br>nS<br>(VR = 10V RL = 100R) |
|-----------------|---------------------------------------------------|------------------------|--------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------------------|
| 24 pin          | 0.6 900                                           | 16                     | 1.0                      | 0.66                                | 0.1                                          | 9                                           | 4                                                        |







298-4562

RS Components shall not be liable for any liability or loss of any nature (howsoever caused and whether or not due to RS Components' negligence) which may result from the use of any information provided in RS technical literature